通过PYTHON来实现图像分割详解

程序思路:

此次程序主要是利用PIL(Python Image Libraty)这库,来进行图片的处理。

PIL是一个功能非常强大的python图像处理标准库,但由于PIL只支持python2.7。如今很多python程序员都使用python3.x,所以PIL在之前的基础上分离出来一个分支,另外创建一个Pillow库,以便支持python3.x, 本程序在使用之前确保已经安装了Pillow库。

程序首先把你要分隔的图像读取到一个变量中,然后我们定义了一个 fill_image() 方法,用来填充图像让原本大小不一的图像,重新变为一个长宽相同的正方形图像,方便之后处理。

通过 fill_image() 方法,我们就会得到新的一张正方形图像。随后我们在利用 cut_image() 方法,把图像分隔成 9 张,因为微信朋友圈最多发 9张图片。

from PIL import Image
import sys
#先将 input image 填充为正方形
def fill_image(image):
  width, height = image.size
  #选取长和宽中较大值作为新图片的
  new_image_length = width if width > height else height
  #生成新图片[白底]
  new_image = Image.new(image.mode, (new_image_length, new_image_length), color='white')  #注意这个函数!
  #将之前的图粘贴在新图上,居中
  if width > height:#原图宽大于高,则填充图片的竖直维度 #(x,y)二元组表示粘贴上图相对下图的起始位置,是个坐标点。
    new_image.paste(image, (0, int((new_image_length - height) / 2)))
  else:
    new_image.paste(image, (int((new_image_length - width) / 2),0))
  return new_image
def cut_image(image):
  width, height = image.size
  item_width = int(width / 3) #因为朋友圈一行放3张图。
  box_list = []
  # (left, upper, right, lower)
  for i in range(0,3):
    for j in range(0,3):
      #print((i*item_width,j*item_width,(i+1)*item_width,(j+1)*item_width))
      box = (j*item_width,i*item_width,(j+1)*item_width,(i+1)*item_width)
      box_list.append(box)
  image_list = [image.crop(box) for box in box_list]
  return image_list
#保存
def save_images(image_list):
  index = 1
  for image in image_list:
    image.save(str(index) + '.png', 'PNG')
    index += 1
if __name__ == '__main__':
  file_path = "2.jpg" #图片保存的地址
  image = Image.open(file_path)
  #image.show()
  image_new = fill_image(image)
  image_list = cut_image(image_new)
  save_images(image_list)

如果有兴趣的话可以看一看Pillow库的使用

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 详解Python计算机视觉 图像扭曲(仿射扭曲)

    对图像块应用仿射变换,我们将其称为图像扭曲(或者仿射扭曲).该操作不仅经常应用在计算机图形学中,而且经常出现在计算机视觉算法中. 一.仿射变换原理 仿射变换能够保持图像的"平直性",包括旋转,缩放,平移,错切操作.对于三个点,仿射变换可以将一副图像进行扭曲,使得三对对应点对可以完美地匹配上.仿射变换具有6个自由度,有三个对应点对可以给出6个约束条件(对于这三个对应点对,x和y坐标必须都要匹配) 仿射变换是在几何上定义为两个向量空间之间的一个仿射变换或者仿射映射.由一个非奇异的线性变换(

  • Python给图像添加噪声具体操作

    在我们进行图像数据实验的时候往往需要给图像添加相应的噪声,那么该怎么添加呢,下面给出具体得操作方法. 1.打开Python的shell界面,界面如图所示: 2.载入skimage工具包和其他的工具包,如图所示,代码如下: from skimage import io,data import numpy as np 3.采用以下指令读取图片: img=data.coffee() 4.采用以下指令填产生噪声: rows,cols,dims=img.shape for i in range(5000)

  • Python3+OpenCV2实现图像的几何变换(平移、镜像、缩放、旋转、仿射)

    前言 总结一下最近看的关于opencv图像几何变换的一些笔记. 这是原图: 1.平移 import cv2 import numpy as np img = cv2.imread("image0.jpg", 1) imgInfo = img.shape height = imgInfo[0] width = imgInfo[1] mode = imgInfo[2] dst = np.zeros(imgInfo, np.uint8) for i in range( height ): f

  • Python中的十大图像处理工具(小结)

    Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具.本文主要介绍了一些简单易懂最常用的Python图像处理库. 当今世界充满了各种数据,而图像是其中高的重要组成部分.然而,若想其有所应用,我们需要对这些图像进行处理.图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面. 图像处理中的常见任务包括显示图像,基本操作(如裁剪.翻转.旋转等),图像分割,分类和特征提取,图像恢复和图像识别等. Pyt

  • python图像和办公文档处理总结

    用程序来处理图像和办公文档经常出现在实际开发中,Python的标准库中虽然没有直接支持这些操作的模块,但我们可以通过Python生态圈中的第三方模块来完成这些操作. 操作图像 计算机图像相关知识 颜色.如果你有使用颜料画画的经历,那么一定知道混合红.黄.蓝三种颜料可以得到其他的颜色,事实上这三种颜色就是被我们称为美术三原色的东西,它们是不能再分解的基本颜色.在计算机中,我们可以将红.绿.蓝三种色光以不同的比例叠加来组合成其他的颜色,因此这三种颜色就是色光三原色,所以我们通常会将一个颜色表示为一个

  • Python Image模块基本图像处理操作小结

    本文实例讲述了Python Image模块基本图像处理操作.分享给大家供大家参考,具体如下: Python 里面最常用的图像操作库是Image library(PIL),功能上,虽然还不能跟Matlab比较,但是还是比较强大的,废话补多少,写点记录笔记. 1. 首先需要导入需要的图像库: import Image 2. 读取一张图片: im=Image.open('/home/Picture/test.jpg') 3. 显示一张图片: im.show() 4. 保存图片: im.save("sa

  • python opencv实现图像边缘检测

    本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • 通过PYTHON来实现图像分割详解

    程序思路: 此次程序主要是利用PIL(Python Image Libraty)这库,来进行图片的处理. PIL是一个功能非常强大的python图像处理标准库,但由于PIL只支持python2.7.如今很多python程序员都使用python3.x,所以PIL在之前的基础上分离出来一个分支,另外创建一个Pillow库,以便支持python3.x, 本程序在使用之前确保已经安装了Pillow库. 程序首先把你要分隔的图像读取到一个变量中,然后我们定义了一个 fill_image() 方法,用来填充

  • Python基于纹理背景和聚类算法实现图像分割详解

    目录 一.基于纹理背景的图像分割 二.基于K-Means聚类算法的区域分割 三.总结 一.基于纹理背景的图像分割 该部分主要讲解基于图像纹理信息(颜色).边界信息(反差)和背景信息的图像分割算法.在OpenCV中,GrabCut算法能够有效地利用纹理信息和边界信息分割背景,提取图像目标物体.该算法是微软研究院基于图像分割和抠图的课题,它能有效地将目标图像分割提取,如图1所示[1]. GrabCut算法原型如下所示: mask, bgdModel, fgdModel = grabCut(img,

  • 基于Python实现自动扫雷详解

    目录 准备 实现思路 窗体截取 雷块分割 雷块识别 扫雷算法实现 用Python+OpenCV实现了自动扫雷,突破世界记录,我们先来看一下效果吧. 中级 - 0.74秒 3BV/S=60.81 相信许多人很早就知道有扫雷这么一款经典的游(显卡测试)戏(软件),更是有不少人曾听说过中国雷圣,也是中国扫雷第一.世界综合排名第二的郭蔚嘉的顶顶大名.扫雷作为一款在Windows9x时代就已经诞生的经典游戏,从过去到现在依然都有着它独特的魅力:快节奏高精准的鼠标操作要求.快速的反应能力.刷新纪录的快感,这

  • Python OpenCV阈值处理详解

    目录 前言 阈值技术简介 简单的阈值技术 阈值类型 简单阈值技术的实际应用 前言 图像分割是许多计算机视觉应用中的关键处理步骤,通常用于将图像划分为不同的区域,这些区域常常对应于真实世界的对象.因此,图像分割是图像识别和内容分析的重要步骤.图像阈值是一种简单.有效的图像分割方法,其中像素根据其强度值进行分区.在本文中,将介绍 OpenCV 所提供的主要阈值技术,可以将这些技术用作计算机视觉应用程序中图像分割的关键部分. 阈值技术简介 阈值处理是一种简单.有效的将图像划分为前景和背景的方法.图像分

  • MySQL数据库设计之利用Python操作Schema方法详解

    弓在箭要射出之前,低声对箭说道,"你的自由是我的".Schema如箭,弓似Python,选择Python,是Schema最大的自由.而自由应是一个能使自己变得更好的机会. Schema是什么? 不管我们做什么应用,只要和用户输入打交道,就有一个原则--永远不要相信用户的输入数据.意味着我们要对用户输入进行严格的验证,web开发时一般输入数据都以JSON形式发送到后端API,API要对输入数据做验证.一般我都是加很多判断,各种if,导致代码很丑陋,能不能有一种方式比较优雅的验证用户数据呢

  • Python之str操作方法(详解)

    1. str.format():使用"{}"占位符格式化字符串(占位符中的索引号形式和键值对形式可以混合使用). >>> string = 'python{}, django{}, tornado{}'.format(2.7, 'web', 'tornado') # 有多少个{}占位符就有多少个值与其对应,按照顺序"填"进字符串中 >>> string 'python2.7, djangoweb, tornadotornado'

  • 基于python时间处理方法(详解)

    在处理数据和进行机器学习的时候,遇到了大量需要处理的时间序列.比如说:数据库读取的str和time的转化,还有time的差值计算.总结一下python的时间处理方面的内容. 一.字符串和时间序列的转化 time.strptime():字符串=>时间序列 time.strftime():时间序列=>字符串 import time start = "2017-01-01" end = "2017-8-12" startTime = time.strptime

  • Python探索之SocketServer详解

    SocketServer,网络通信服务器,是Python标准库中的一个模块,其作用是创建网络服务器.SocketServer模块定义了一些类来处理诸如TCP.UDP.UNIX流和UNIX数据报之上的同步网络请求. SocketServer模块处理网络请求的功能,可以通过两个主要的类来实现:一个是服务器类,一个是请求处理类. 服务器类 处理通信问题,如监听一个套接字并接收连接等: 请求处理类 处理"协议"问题,如解释到来的数据.处理数据并把数据发回给客户端等. 这种实现将服务器的实现过程

  • python学习 流程控制语句详解

    ###################### 分支语句 python3.5 ################ #代码的缩进格式很重要 建议4个空格来控制 #根据逻辑值(True,Flase)判断程序的运行方向 # Ture:表示非空的量(String,tuple元组 .list.set.dictonary),所有非零的数字 # False:0,None .空的量 #逻辑表达式 可以包含 逻辑运算符 and or not if: ##################################

  • Python 调用Java实例详解

    Python 调用Java实例详解 前言: Python 对服务器端编程不如Java 所以这方面可能要调用Java代码 前提: Linux 环境  1 安装 jpype1 安装后测试代码: from jpype import * startJVM(getDefaultJVMPath(), "-ea") java.lang.System.out.println("Hello World") shutdownJVM() 2 调用非jdk的jar包, test.jar 包

随机推荐