python识别图像并提取文字的实现方法

前言

python图像识别一般基础到的就是tesseract了,在爬虫中处理验证码广泛使用。

安装

安装教程网上大都差不多,Windows下确实比较麻烦,涉及到各种路径、环境变量甚至与linux不同的路径分隔符,所以这里的安装是基于Centos7。

1. 依赖安装

yum install -y automake autoconf libtool gcc gcc-c++

2. 安装leptonica

Leptonica主要用于图像处理和图像分析

原则上所有的库文件都是可以直接用yum安装的,如果想要具体的某个版本,可以前往官方源下载对应版本然后按照对应方式编译

wget http://www.leptonica.org/source/leptonica-1.74.4.tar.gz
tar -zxvf leptonica-1.74.4.tar.gz
cd leptonica-1.74.4/
./configure
make && make install

3. 安装tesseract

其他各版本可以在这里下载并自行编译,也提供直接使用的文件。

yum install tesseract

4. 验证安装

tesseract --version

5. 语言包下载

前往tesseract-ocr/tessdata下载相应的语言包,然后将之移动到tessdata目录下,可以用whereis tesseract查看一下具体的目录,我的是/usr/share/tesseract/tessdata/mv *.traineddata /usr/local/share/tessdata/

6. 查看目前已下载的语言

tesseract --list-langs

使用

# tesseract
Usage:
tesseract --help | --help-psm | --help-oem | --version
tesseract --list-langs [--tessdata-dir PATH]
tesseract --print-parameters [options...] [configfile...]
tesseract imagename|stdin outputbase|stdout [options...] [configfile...]
OCR options:
--tessdata-dir PATH Specify the location of tessdata path.
--user-words PATH Specify the location of user words file.
--user-patterns PATH Specify the location of user patterns file.
-l LANG[+LANG] Specify language(s) used for OCR.
-c VAR=VALUE Set value for config variables.
Multiple -c arguments are allowed.
--psm NUM Specify page segmentation mode.
--oem NUM Specify OCR Engine mode.
NOTE: These options must occur before any configfile.

语法

tesseract imagename outputbase [-l lang] [-psm pagesegmode] [configfile...]
  • imagename:图片名字
  • outputbase:指定输出,如果希望直接输出而不是保存到文件,那么就使用 stdout,否则这个参数将会作为保存结果的文件的前缀
  • -l指定语言文件,默认使用英文
  • tesseract --print-parameters:查看更多参数信息
  • 使用-c指定单项参数的值或者将配置写入配置文件放在命令最后(支持多个配置文件)
  • psm 识别图像的方式

0:定向脚本监测(OSD)

1: 使用OSD自动分页

2 :自动分页,但是不使用OSD或OCR(Optical Character Recognition,光学字符识别)

3 :全自动分页,但是没有使用OSD(默认)

4 :假设可变大小的一个文本列。

5 :假设垂直对齐文本的单个统一块。

6 :假设一个统一的文本块。

7 :将图像视为单个文本行。

8 :将图像视为单个词。

9 :将图像视为圆中的单个词。

10 :将图像视为单个字符。

python中使用

Tesseract安装完成后可以很方便的被Python调用,但是需要pillow和pytesseract的支持。

python中转换

image_to_data(image, lang=None, config='', nice=0, output_type=Output.STRING)
  • image Object,由Tesseract处理的图像的PIL Image/NumPy数组
  • lang String,Tesseract语言代码字符串
  • config String,任何其他配置字符串,例如:config='--psm 6'
  • 语言文件可以叠加,用“+”隔开
  • 我们也可以在这里进行tessdata路径的设置,跟在config里面即可
  • 更多配置包括config和psm都和tesseract类似

实例:

流程: 打开图片,配置,转换,可以通过Image的open或者cv2的imread打开图片,之后对图片进行对比度增强,降噪等处理,效果会好一些。

from PIL import Image
import pytesseract
class Languages:
CHS = 'chi_sim'
ENG = 'eng'
def img_to_str(image_path, lang=Languages.ENG):
return pytesseract.image_to_string(Image.open(image_path), lang)
print(img_to_str('pic/numu.png', lang=Languages.ENG))
print(img_to_str('pic/pro.png', lang=Languages.ENG))

总结

简单的文本识别效果还是不错的,但是设计到多空行、符号等,识别效果就不是太好了,准确度方面可以通过对字库的训练达到想要的效果,之后对获取到的文本利用诸如re等各种库进行操作,其实应用还蛮广泛的。2. 但是它在验证码方面的话效果还是不错的,验证码的话tesserocr也是比较方面的.

识别中文可能会出现编码错误,这也是识别上的漏洞之一了,网上大佬们所说的改变文本的编码似乎并不能解决问题,所以对长文本图片处理还是不太建议直接转换。

图文处理也可以借鉴一些各平台的API,百度、腾讯、美团都有支持.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python批量识别图片指定区域文字内容

    Python批量识别图片指定区域文字内容,供大家参考,具体内容如下 简介 对于一张图片,需求识别指定区域的内容 1.截取原始图上的指定图片当做模板 2.根据模板相似度去再原始图片上识别准确坐标 3.根据坐标剪切出指定位置图片,也就是所需的内容区域 4.对指定位置图片进行ocr识别 环境 Ubuntu18.04 Python2.7 所需Python模块 1.aircv 用于识别模板再原始图的位置坐标 pip install aircv 2.Pillow 用于剪裁图片 pip install Pil

  • python验证码识别教程之利用投影法、连通域法分割图片

    前言 今天这篇文章主要记录一下如何切分验证码,用到的主要库就是Pillow和Linux下的图像处理工具GIMP.首先假设一个固定位置和宽度.无粘连.无干扰的例子学习一下如何使用Pillow来切割图片. 使用GIMP打开图片后,按 加号 放大图片,然后点击View->Show Grid来显示网格线: 其中,每个正方形边长为10像素,所以数字1切割坐标为左20.上20.右40.下70.以此类推可以知道剩下3个数字的切割位置. 代码如下: from PIL import Image p = Image

  • Python3调用百度AI识别图片中的文字功能示例【测试可用】

    本文实例讲述了Python3调用百度AI识别图片中的文字功能.分享给大家供大家参考,具体如下: 首先pip install命令安装baidu-aip模块,如下图所示(这里使用pip3 install baidu-aip命令): 编辑Python代码时注意,需要首先引入AipOcr和re两个模块,即: from aip import AipOcr import re 示例代码如下: from aip import AipOcr import re APP_ID='***' API_KEY='***

  • 如何使用Python进行OCR识别图片中的文字

    朋友需要一个工具,将图片中的文字提取出来.我帮他在网上找了一些OCR的应用,都不好用.所以准备自己研究,写一个Web APP供他使用. OCR1,全称Optical character recognition,或者optical character reader,中文译名叫做光学文字识别.它是把图像文件中的手写文本,打印文本转换为机器编码文本的一种方法. OCR技术广泛用于识别打印纸张中的文字数据 -- 比如护照,支票,银行声明,收据,统计表单,邮件等.OCR的早期版本,需要对图片中的每个文字都

  • Python图像处理之识别图像中的文字(实例讲解)

    ①安装PIL:pip install Pillow(之前的博客中有写过) ②安装pytesser3:pip install pytesser3 ③安装pytesseract:pip install pytesseract ④安装autopy3: 先安装wheel:pip install wheel 下载autopy3-0.51.1-cp36-cp36m-win_amd64.whl[点击打开链接] 执行命令:pip install E:\360安全浏览器下载\autopy3-0.51.1-cp36

  • python验证码识别教程之利用滴水算法分割图片

    滴水算法概述 滴水算法是一种用于分割手写粘连字符的算法,与以往的直线式地分割不同 ,它模拟水滴的滚动,通过水滴的滚动路径来分割字符,可以解决直线切割造成的过分分割问题. 引言 之前提过对于有粘连的字符可以使用滴水算法来解决分割,但智商捉急的我实在是领悟不了这个算法的精髓,幸好有小伙伴已经实现相关代码. 我对上面的代码进行了一些小修改,同时升级为python3的代码. 还是以这张图片为例: 在以前的我们已经知道这种简单的粘连可以通过控制阈值来实现分割,这里我们使用滴水算法. 首先使用之前文章中介绍

  • Python实现识别图片内容的方法分析

    本文实例讲述了Python实现识别图片内容的方法.分享给大家供大家参考,具体如下: python识别图片内容. 这里我的环境为windows64位,python2.7.14 需要用到PIL模块和tesseract模块. 首先需要安装pip包管理,安装方法可参考附录windows下安装python包管理器pip 安装PIL模块: pip install Pillow tesseract模块安装: pip install pytesseract 安装识别引擎和中文语言包,点击此处本站下载. 下载完成

  • python3+opencv3识别图片中的物体并截取的方法

    如下所示: 运行环境:python3.6.4 opencv3.4.0 # -*- coding:utf-8 -*- """ Note: 使用Python和OpenCV检测图像中的物体并将物体裁剪下来 """ import cv2 import numpy as np # step1:加载图片,转成灰度图 image = cv2.imread("353.jpg") gray = cv2.cvtColor(image, cv2.C

  • python识别图像并提取文字的实现方法

    前言 python图像识别一般基础到的就是tesseract了,在爬虫中处理验证码广泛使用. 安装 安装教程网上大都差不多,Windows下确实比较麻烦,涉及到各种路径.环境变量甚至与linux不同的路径分隔符,所以这里的安装是基于Centos7. 1. 依赖安装 yum install -y automake autoconf libtool gcc gcc-c++ 2. 安装leptonica Leptonica主要用于图像处理和图像分析 原则上所有的库文件都是可以直接用yum安装的,如果想

  • Python 识别录音并转为文字的实现

    目录 程式功能: 用 UI 界面,点击界面上的“开始识别”来录音(调用百度云语音接口),并自动将结果显示在界面的文本框中 Time: 2022/03/06 Author: Xiaohong 功能:Python 更改目录下 目录及文件的 顺序命名 项目的文件结构方式:1. PyQt5 UI 文件:  My_Audio_Record_cloud.ui2. PyQt5 UI 文件转换生成的 PY 文件:  My_Audio_Record_cloud_Ui.py3. PyQt5 UI 文件对应的 Cla

  • C#实现在图像中绘制文字图形的方法

    本文实例讲述了C#实现在图像中绘制文字图形的方法.分享给大家供大家参考.具体实现方法如下: using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using System.Drawing.Drawing2D; using S

  • Python cv2 图像自适应灰度直方图均衡化处理方法

    __author__ = 'Administrator' import numpy as np import cv2 mri_img = np.load('mri_img.npy') # normalization mri_max = np.amax(mri_img) mri_min = np.amin(mri_img) mri_img = ((mri_img-mri_min)/(mri_max-mri_min))*255 mri_img = mri_img.astype('uint8') r,

  • Python识别二维码的两种方法详解

    目录 前言 pyzbar + PIL cv2 前言 最近在搜寻资料时,发现了一则10年前的新闻:二维码将成线上线下关键入口.从今天的移动互联网来看,支付收款码/健康码等等与我们息息相关,二维码确实成为了我们生活中不可或缺的一部分. 在学习Python处理二维码的过程中,我们看到的大多是“用python生成酷炫二维码”.“用Python制作动图二维码”之类的文章.而关于使用Python批量识别二维码的教程,并不多见.所以今天我会给大家分享两种批量识别二维码的Python技巧! pyzbar + P

  • Python实现识别图像中人物的示例代码

    目录 前言 环境部署 代码 总结 前言 接着上一篇:AI识别照片是谁,人脸识别face_recognition开源项目安装使用 根据项目提供的demo代码,调整了一下功能,自己写了一个识别人脸的工具代码. 环境部署 按照上一篇的安装部署就可以了. 代码 不废话,直接上代码. #!/user/bin/env python # coding=utf-8 """ @project : face_recognition @author : 剑客阿良_ALiang @file : te

  • 详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

    前言 这周和大家分享如何用python识别图像里的条码.用到的库可以是zbar.希望西瓜6辛苦码的代码不要被盗了.(zxing的话,我一直没有装好,等装好之后再写一篇) 具体步骤 前期准备 用opencv去读取图片,用pip进行安装. pip install opencv-python 所用到的图片就是这个 使用pyzbar windows的安装方法是 pip install pyzbar 而mac的话,最好用brew来安装. (有可能直接就好,也有可能很麻烦) 装好之后就是读取图片,识别条码.

  • 基于Python实现图像文字识别OCR工具

    目录 引言 功能列表 OCR部分 界面部分 软件代码 参考链接 引言 最近在技术交流群里聊到一个关于图像文字识别的需求,在工作.生活中常常会用到,比如票据.漫画.扫描件.照片的文本提取. 博主基于 PyQt + PaddleOCR 写了一个桌面端的OCR工具,用于快速实现图片中文本区域自动检测+文本自动识别. 识别效果如下图所示: 所有框选区域为OCR算法自动检测,右侧列表有每个框对应的文字内容: 点击右侧"识别结果"中的文本记录,然后点击"复制到剪贴板"即可复制该

  • python实现在函数图像上添加文字和标注的方法

    如下所示: import matplotlib.pyplot as plt import numpy as np from matplotlib import font_manager #先确定字体,以免无法识别汉字 my_font = font_manager.FontProperties(fname= "C:/Windows/Fonts/msyh.ttc") X=np.linspace(-np.pi,np.pi,100) plt.figure(figsize=(6,5)) Y_x2

随机推荐