redis中热key问题该如何解决

引言

讲了几天的数据库系列的文章,大家一定看烦了,其实还没讲完。。。(以下省略一万字)。

今天我们换换口味,来写redis方面的内容,谈谈热key问题如何解决。

其实热key问题说来也很简单,就是瞬间有几十万的请求去访问redis上某个固定的key,从而压垮缓存服务的情情况。

其实生活中也是有不少这样的例子。比如XX明星结婚。那么关于XX明星的Key就会瞬间增大,就会出现热数据问题。

ps: hot key和big key问题,大家一定要有所了解。

本文预计分为如下几个部分

  • 热key问题
  • 如何发现
  • 业内方案

正文

热Key问题

上面提到,所谓热key问题就是,突然有几十万的请求去访问redis上的某个特定key。那么,这样会造成流量过于集中,达到物理网卡上限,从而导致这台redis的服务器宕机。

那接下来这个key的请求,就会直接怼到你的数据库上,导致你的服务不可用。

怎么发现热key

方法一:凭借业务经验,进行预估哪些是热key

其实这个方法还是挺有可行性的。比如某商品在做秒杀,那这个商品的key就可以判断出是热key。缺点很明显,并非所有业务都能预估出哪些key是热key。

方法二:在客户端进行收集

这个方式就是在操作redis之前,加入一行代码进行数据统计。那么这个数据统计的方式有很多种,也可以是给外部的通讯系统发送一个通知信息。缺点就是对客户端代码造成入侵。

方法三:在Proxy层做收集

有些集群架构是下面这样的,Proxy可以是Twemproxy,是统一的入口。可以在Proxy层做收集上报,但是缺点很明显,并非所有的redis集群架构都有proxy。

方法四:用redis自带命令

(1)monitor命令,该命令可以实时抓取出redis服务器接收到的命令,然后写代码统计出热key是啥。当然,也有现成的分析工具可以给你使用,比如 redis-faina 。但是该命令在高并发的条件下,有内存增暴增的隐患,还会降低redis的性能。

(2)hotkeys参数,redis 4.0.3提供了redis-cli的热点key发现功能,执行redis-cli时加上–hotkeys选项即可。但是该参数在执行的时候,如果key比较多,执行起来比较慢。

方法五:自己抓包评估

Redis客户端使用TCP协议与服务端进行交互,通信协议采用的是RESP。自己写程序监听端口,按照RESP协议规则解析数据,进行分析。缺点就是开发成本高,维护困难,有丢包可能性。

以上五种方案,各有优缺点。根据自己业务场景进行抉择即可。那么发现热key后,如何解决呢?

如何解决

目前业内的方案有两种

(1)利用二级缓存

比如利用 ehcache ,或者一个 HashMap 都可以。在你发现热key以后,把热key加载到系统的JVM中。

针对这种热key请求,会直接从jvm中取,而不会走到redis层。

假设此时有十万个针对同一个key的请求过来,如果没有本地缓存,这十万个请求就直接怼到同一台redis上了。

现在假设,你的应用层有50台机器,OK,你也有jvm缓存了。这十万个请求平均分散开来,每个机器有2000个请求,会从JVM中取到value值,然后返回数据。避免了十万个请求怼到同一台redis上的情形。

(2)备份热key

这个方案也很简单。不要让key走到同一台redis上不就行了。我们把这个key,在多个redis上都存一份不就好了。接下来,有热key请求进来的时候,我们就在有备份的redis上随机选取一台,进行访问取值,返回数据。

假设redis的集群数量为N,步骤如下图所示

注:不一定是2N,你想取3N,4N都可以,看要求。

伪代码如下

const M = N * 2
//生成随机数
random = GenRandom(0, M)
//构造备份新key
bakHotKey = hotKey + “_” + random
data = redis.GET(bakHotKey)
if data == NULL {
  data = GetFromDB()
  redis.SET(bakHotKey, expireTime + GenRandom(0,5))
}

业内方案

OK,其实看完上面的内容,大家可能会有一个疑问。

烟哥,有办法在项目运行过程中,自动发现热key,然后程序自动处理么?
嗯,好问题,那我们来讲讲业内怎么做的。其实只有两步

(1)监控热key

(2)通知系统做处理

正巧,前几天有赞出了一篇《有赞透明多级缓存解决方案(TMC)》,里头也有提到热点key问题,我们刚好借此说明

(1)监控热key

在监控热key方面,有赞用的是方式二:在客户端进行收集。

在《有赞透明多级缓存解决方案(TMC)》中有一句话提到

TMC 对原生jedis包的JedisPool和Jedis类做了改造,在JedisPool初始化过程中集成TMC“热点发现”+“本地缓存”功能Hermes-SDK包的初始化逻辑。

也就说人家改写了jedis原生的jar包,加入了Hermes-SDK包。

那Hermes-SDK包用来干嘛?

OK,就是做 热点发现 和 本地缓存 。

从监控的角度看,该包对于Jedis-Client的每次key值访问请求,Hermes-SDK 都会通过其通信模块将key访问事件异步上报给Hermes服务端集群,以便其根据上报数据进行“热点探测”。

当然,这只是其中一种方式,有的公司在监控方面用的是方式五:自己抓包评估

具体是这么做的,先利用flink搭建一套流式计算系统。然后自己写一个抓包程序抓redis监听端口的数据,抓到数据后往kafka里丢。

接下来,流式计算系统消费kafka里的数据,进行数据统计即可,也能达到监控热key的目的。

(2)通知系统做处理

在这个角度,有赞用的是上面的解决方案一:利用二级缓存进行处理。

有赞在监控到热key后,Hermes服务端集群会通过各种手段通知各业务系统里的Hermes-SDK,告诉他们:"老弟,这个key是热key,记得做本地缓存。"

于是Hermes-SDK就会将该key缓存在本地,对于后面的请求。Hermes-SDK发现这个是一个热key,直接从本地中拿,而不会去访问集群。

除了这种通知方式以外。我们也可以这么做,比如你的流式计算系统监控到热key了,往zookeeper里头的某个节点里写。然后你的业务系统监听该节点,发现节点数据变化了,就代表发现热key。最后往本地缓存里写,也是可以的。

通知方式各种各样,大家可以自由发挥。本文只是提供一个思路。

总结

希望通过本文,大家明白如何处理生产上遇到的热key问题。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。

(0)

相关推荐

  • Redis获取某个前缀的key脚本实例

    1.背景 在平时的维护中,经常会遇到要统计某个前缀的key有多少,在请求比较多的redis中,keys * 会直接导致阻塞. 可以采用scan的方式进行增量迭代,查询使用pipeline减少交互,提高效率. 2.scan命令的优缺点 SCAN命令的有SCAN,SSCAN,HSCAN,ZSCAN. SCAN的话就是遍历所有的keys 其他的SCAN命令的话是SCAN选中的集合. SCAN命令是增量的循环,每次调用只会返回一小部分的元素.所以不会有KEYS命令的坑. SCAN命令返回的是一个游标,从

  • redis数据库查找key在内存中的位置的方法

    一.预先需要了解的知识1.redis 中的每一个数据库,都由一个 redisDb 的结构存储.其中,redisDb.id 存储着 redis 数据库以整数表示的号码.redisDb.dict 存储着该库所有的键值对数据.redisDb.expires 保存着每一个键的过期时间.2.当redis 服务器初始化时,会预先分配 16 个数据库(该数量可以通过配置文件配置),所有数据库保存到结构 redisServer 的一个成员 redisServer.db 数组中.当我们选择数据库 select n

  • 关于使用key/value数据库redis和TTSERVER的心得体会

    先说redisredis是一个类似memcached的key/value存储系统,它支持存储的value类型相对较多,包括string(字符串). list(链表).set(集合)和zset(有序集合).在此基础上,redis支持各种不同方式的排序.与memcached一样,为了保证效率,数据都是缓存在内存中.区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件(这点儿个人觉得redis比memcache 在数据保存上要安全一些),并且在此基础上实现了master-

  • 关于redis Key淘汰策略的实现方法

    1 配置文件中的最大内存删除策略 在redis的配置文件中,可以设置redis内存使用的最大值,当redis使用内存达到最大值时(如何知道已达到最大值?),redis会根据配置文件中的策略选取要删除的key,并删除这些key-value的值.若根据配置的策略,没有符合策略的key,也就是说内存已经容不下新的key-value了,但此时有不能删除key,那么这时候写的话,将会出现写错误. 1.1 最大内存参数设置 若maxmemory参数设置为0,则分两种情况: *在64位系统上,表示没有限制.

  • Redis批量删除KEY的方法

    Redis 中有删除单个 Key 的指令 DEL,但好像没有批量删除 Key 的指令,不过我们可以借助 Linux 的 xargs 指令来完成这个动作. 复制代码 代码如下: redis-cli keys "*" | xargs redis-cli del //如果redis-cli没有设置成系统变量,需要指定redis-cli的完整路径 //如:/opt/redis/redis-cli keys "*" | xargs /opt/redis/redis-cli d

  • Redis教程(七):Key操作命令详解

    一.概述: 在该系列的前几篇博客中,主要讲述的是与Redis数据类型相关的命令,如String.List.Set.Hashes和Sorted-Set.这些命令都具有一个共同点,即所有的操作都是针对与Key关联的Value的.而该篇博客将主要讲述与Key相关的Redis命令.学习这些命令对于学习Redis是非常重要的基础,也是能够充分挖掘Redis潜力的利器.       在该篇博客中,我们将一如既往的给出所有相关命令的明细列表和典型示例,以便于我们现在的学习和今后的查阅. 二.相关命令列表: 命

  • Redis获取某个大key值的脚本实例

    1.前言 工作中,经常有些Redis实例使用不恰当,或者对业务预估不准确,或者key没有及时进行处理等等原因,导致某些KEY相当大. 那么大Key会带来哪些问题呢? 如果是集群模式下,无法做到负载均衡,导致请求倾斜到某个实例上,而这个实例的QPS会比较大,内存占用也较多:对于Redis单线程模型又容易出现CPU瓶颈,当内存出现瓶颈时,只能进行纵向库容,使用更牛逼的服务器. 涉及到大key的操作,尤其是使用hgetall.lrange 0 -1.get.hmget 等操作时,网卡可能会成为瓶颈,也

  • Redis未授权访问配合SSH key文件利用详解

    前言 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API. Redis 未授权访问的问题是一直存在的问题,知道创宇安全研究团队历史上也做过相关的应急,今日,又出现 Redis 未授权访问配合 SSH key 文件被利用的情况,导致一大批 Redis 服务器被黑,今天我们来简要的分析下. 一.漏洞概述 Redis 默认情况下,会绑定在 0.0.0.0:6379,这样将会将 Redis 服务暴露到公网上,如果在没有

  • redis 用scan指令 代替keys指令(详解)

    众所周知,当redis中key数量越大,keys 命令执行越慢,而且最重要的会阻塞服务器,对单线程的redis来说,简直是灾难,终于找到了替代命令scan. SCAN cursor [MATCH pattern] [COUNT count] SCAN 命令及其相关的 SSCAN 命令. HSCAN 命令和 ZSCAN 命令都用于增量地迭代(incrementally iterate)一集元素(a collection of elements): SCAN 命令用于迭代当前数据库中的数据库键. S

  • redis中热key问题该如何解决

    引言 讲了几天的数据库系列的文章,大家一定看烦了,其实还没讲完...(以下省略一万字). 今天我们换换口味,来写redis方面的内容,谈谈热key问题如何解决. 其实热key问题说来也很简单,就是瞬间有几十万的请求去访问redis上某个固定的key,从而压垮缓存服务的情情况. 其实生活中也是有不少这样的例子.比如XX明星结婚.那么关于XX明星的Key就会瞬间增大,就会出现热数据问题. ps: hot key和big key问题,大家一定要有所了解. 本文预计分为如下几个部分 热key问题 如何发

  • SpringBoot如何监控Redis中某个Key的变化(自定义监听器)

    目录 SpringBoot 监控Redis中某个Key的变化 1.声明 2.基本理念 3.实现和创建监听 4.基本demo的其他配置 5.基本测试 6.小结一下 SpringBoot自定义监听器 原理 示例 SpringBoot 监控Redis中某个Key的变化 1.声明 当前内容主要为本人学习和基本测试,主要为监控redis中的某个key的变化(感觉网上的都不好,所以自己看Spring源码直接写一个监听器) 个人参考: Redis官方文档 Spring-data-Redis源码 2.基本理念

  • Redis什么是热Key问题以及如何解决热Key问题

    目录 一.什么是热Key? 二.热Key产生的原因? 三.热点Key的危害? 四.如何识别热点Key? 五.如何解决热Key问题? 一.什么是热Key? 在Redis中,我们把访问频率高的Key,称为热Key. 比如突然又几十万的请求去访问redis中某个特定的Key,那么这样会造成redis服务器短时间流量过于集中,很可能导致redis的服务器宕机. 那么接下来对这个Key的请求,都会直接请求到我们的后端数据库中,数据库性能本来就不高,这样就可能直接压垮数据库,进而导致后端服务不可用. 二.热

  • Redis中常见的几种集群部署方案

    目录 前言 几种常用的集群方案 主从集群模式 全量同步 增量同步 举个栗子 哨兵机制 什么是哨兵机制 如何保证选主的准确性 如何选主 选举主节点的规则 哨兵进行主节点切换 切片集群 RedisCluster方案 哈希槽重新分配 避免HotKey 如何发现HotKey HotKey如何解决 避免BigKey BigKey存在问题 如何发现BigKey BigKey如何避免 BigKey如何删除 参考 前言 这里来了解一下,Redis 中常见的集群方案 几种常用的集群方案 主从集群模式 哨兵机制 切

  • Spring boot redis cache的key的使用方法

    在数据库查询中我们往往会使用增加缓存来提高程序的性能,@Cacheable 可以方便的对数据库查询方法加缓存.本文主要来探究一下缓存使用的key. 搭建项目 数据库 mysql> select * from t_student; +----+--------+-------------+ | id | name | grade_class | +----+--------+-------------+ | 1 | Simone | 3-2 | +----+--------+-----------

  • Redis遍历所有key的两个命令(KEYS 和 SCAN)

    当我们需要遍历Redis所有key或者指定模式的key时,首先想到的是KEYS命令: KEYS pattern 官网对于KEYS命令有一个提示:  KEYS 的速度非常快,例如,Redis在一个有1百万个key的数据库里面执行一次查询需要的时间是40毫秒 .但在一个大的数据库中使用它仍然可能造成性能问题,如果你需要从一个数据集中查找特定的  KEYS , 你最好还是用 Redis 的集合结构  SETS  来代替. KEYS命令使用很简单. redis> MSET one 1 two 2 thr

  • 浅谈Redis 中的过期删除策略和内存淘汰机制

    目录 前言 Redis 中 key 的过期删除策略 1.定时删除 2.惰性删除 3.定期删除 Redis 中过期删除策略 从库是否会脏读主库创建的过期键 内存淘汰机制 内存淘汰触发的最大内存 有哪些内存淘汰策略 内存淘汰算法 LRU LFU 为什么数据删除后内存占用还是很高 内存碎片如何产生 碎片率的意义 如何清理内存碎片 总结 参考 前言 Redis 中的 key 设置一个过期时间,在过期时间到的时候,Redis 是如何清除这个 key 的呢? 这来分析下 Redis 中的过期删除策略和内存淘

  • Redis中过期键如何删除示例详解

    目录 前言 Redis 中 key 的过期删除策略 1.定时删除 2.惰性删除 3.定期删除 Redis 中过期删除策略 从库是否会脏读主库创建的过期键 内存淘汰机制 内存淘汰触发的最大内存 有哪些内存淘汰策略 内存淘汰算法 LRU LFU 为什么数据删除后内存占用还是很高 内存碎片如何产生 碎片率的意义 如何清理内存碎片 总结 参考 前言 Redis 中的 key 设置一个过期时间,在过期时间到的时候,Redis 是如何清除这个 key 的呢? 这来分析下 Redis 中的过期删除策略和内存淘

  • 浅谈Redis 中的过期删除策略和内存淘汰机制

    目录 前言 Redis 中 key 的过期删除策略 1.定时删除 2.惰性删除 3.定期删除 Redis 中过期删除策略 从库是否会脏读主库创建的过期键 内存淘汰机制 内存淘汰触发的最大内存 有哪些内存淘汰策略 内存淘汰算法 LRU LFU 为什么数据删除后内存占用还是很高 内存碎片如何产生 碎片率的意义 如何清理内存碎片 总结 参考 前言 Redis 中的 key 设置一个过期时间,在过期时间到的时候,Redis 是如何清除这个 key 的呢? 这来分析下 Redis 中的过期删除策略和内存淘

  • Redis中什么是Big Key(大key)问题?如何解决Big Key问题?

    目录 一.什么是Big Key? 二.Big Key产生的场景? 三.Big Key的危害? 四.如何识别Big Key? 五.如何解决Big Key问题? 补充知识:key设计 总结 一.什么是Big Key? 通俗易懂的讲,Big Key就是某个key对应的value很大,占用的redis空间很大,本质上是大value问题.key往往是程序可以自行设置的,value往往不受程序控制,因此可能导致value很大. redis中这些Big Key对应的value值很大,在序列化/反序列化过程中花

随机推荐