Python3解决棋盘覆盖问题的方法示例

本文实例讲述了Python3解决棋盘覆盖问题的方法。分享给大家供大家参考,具体如下:

问题描述:

在2^k*2^k个方格组成的棋盘中,有一个方格被占用,用下图的4种L型骨牌覆盖所有棋盘上的其余所有方格,不能重叠。

代码如下:

def chess(tr,tc,pr,pc,size):
  global mark
  global table
  mark+=1
  count=mark
  if size==1:
    return
  half=size//2
  if pr<tr+half and pc<tc+half:
    chess(tr,tc,pr,pc,half)
  else:
    table[tr+half-1][tc+half-1]=count
    chess(tr,tc,tr+half-1,tc+half-1,half)
  if pr<tr+half and pc>=tc+half:
    chess(tr,tc+half,pr,pc,half)
  else:
    table[tr+half-1][tc+half]=count
    chess(tr,tc+half,tr+half-1,tc+half,half)
  if pr>=tr+half and pc<tc+half:
    chess(tr+half,tc,pr,pc,half)
  else:
    table[tr+half][tc+half-1]=count
    chess(tr+half,tc,tr+half,tc+half-1,half)
  if pr>=tr+half and pc>=tc+half:
    chess(tr+half,tc+half,pr,pc,half)
  else:
    table[tr+half][tc+half]=count
    chess(tr+half,tc+half,tr+half,tc+half,half)
def show(table):
  n=len(table)
  for i in range(n):
    for j in range(n):
      print(table[i][j],end=' ')
    print('')
mark=0
n=8
table=[[-1 for x in range(n)] for y in range(n)]
chess(0,0,2,2,n)
show(table)

n是棋盘宽度,必须是2^k,本例中n=8,特殊格子在(2,2)位置,如下图所示:

采用分治法每次把棋盘分成4份,如果特殊格子在这个小棋盘中则继续分成4份,如果不在这个小棋盘中就把该小棋盘中靠近中央的那个格子置位,表示L型骨牌的1/3占据此处,每一次递归都会遍历查询4个小棋盘,三个不含有特殊格子的棋盘置位的3个格子正好在大棋盘中央构成一个完整的L型骨牌,依次类推,找到全部覆盖方法。运行结果如下:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python 连连看连接算法

    功能:为连连看游戏提供连接算法 说明:模块中包含一个Point类,该类是游戏的基本单元"点",该类包含属性:x,y,value. 其中x,y代表了该点的坐标,value代表该点的特征:0代表没有被填充,1-8代表被填充为游戏图案,9代表被填充为墙壁 模块中还包含一个名为points的Point列表,其中保存着整个游戏界面中的每个点 使用模块的时候应首先调用createPoints方法,初始化游戏界面中每个点,然后可通过points访问到每个点,继而初始化界面 模块中核心的方法是link

  • Python多线程经典问题之乘客做公交车算法实例

    本文实例讲述了Python多线程经典问题之乘客做公交车算法.分享给大家供大家参考,具体如下: 问题描述: 乘客乘坐公交车问题,司机,乘客,售票员协同工作,通过多线程模拟三者的工作. 司机:开车,停车 售票员:打开车门,关闭车门 乘客:上车,下车 用Python的Event做线程同步通信,代码如下: # *-* coding:gb2312 *-* import threading import time stationName=("车站0","车站1","车

  • Java基于分治算法实现的棋盘覆盖问题示例

    本文实例讲述了Java基于分治算法实现的棋盘覆盖问题.分享给大家供大家参考,具体如下: 在一个2^k * 2^k个方格组成的棋盘中,有一个方格与其它的不同,若使用以下四种L型骨牌覆盖除这个特殊方格的其它方格,如何覆盖.四个L型骨牌如下图: 棋盘中的特殊方格如图: 实现的基本原理是将2^k * 2^k的棋盘分成四块2^(k - 1) * 2^(k - 1)的子棋盘,特殊方格一定在其中的一个子棋盘中,如果特殊方格在某一个子棋盘中,继续递归处理这个子棋盘,直到这个子棋盘中只有一个方格为止如果特殊方格不

  • Python基于贪心算法解决背包问题示例

    本文实例讲述了Python基于贪心算法解决背包问题.分享给大家供大家参考,具体如下: 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关. 完全背包问题:给定n个物品和一个容量为C的背包,物品i的重量是Wi,其价值为Vi,背包问题是如何选择入背包

  • python k-近邻算法实例分享

    简单说明 这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了. 简称kNN. 已知:训练集,以及每个训练集的标签. 接下来:和训练集中的数据对比,计算最相似的k个距离.选择相似数据中最多的那个分类.作为新数据的分类. python实例 复制代码 代码如下: # -*- coding: cp936 -*- #win系统中应用cp936编码,linux中最好还是utf-8比较好.from numpy import *#引入科学计算包import operator #经典pyt

  • 用Python实现通过哈希算法检测图片重复的教程

    Iconfinder 是一个图标搜索引擎,为设计师.开发者和其他创意工作者提供精美图标,目前托管超过 34 万枚图标,是全球最大的付费图标库.用户也可以在 Iconfinder 的交易板块上传出售原创作品.每个月都有成千上万的图标上传到Iconfinder,同时也伴随而来大量的盗版图.Iconfinder 工程师 Silviu Tantos 在本文中提出一个新颖巧妙的图像查重技术,以杜绝盗版. 我们将在未来几周之内推出一个检测上传图标是否重复的功能.例如,如果用户下载了一个图标然后又试图通过上传

  • Python聚类算法之DBSACN实例分析

    本文实例讲述了Python聚类算法之DBSACN.分享给大家供大家参考,具体如下: DBSCAN:是一种简单的,基于密度的聚类算法.本次实现中,DBSCAN使用了基于中心的方法.在基于中心的方法中,每个数据点的密度通过对以该点为中心以边长为2*EPs的网格(邻域)内的其他数据点的个数来度量.根据数据点的密度分为三类点: 核心点:该点在邻域内的密度超过给定的阀值MinPs. 边界点:该点不是核心点,但是其邻域内包含至少一个核心点. 噪音点:不是核心点,也不是边界点. 有了以上对数据点的划分,聚合可

  • JavaScript编写棋盘覆盖代码详解

    一.前言 之前做了一个算法作业,叫做棋盘覆盖,本来需要用c语言来编写的,但是因为我的c语言是半桶水(哈哈),所以索性就把网上的c语言写法改成JavaScript写法,并且把它的覆盖效果显示出来 二.关键代码 <!DOCTYPE html> <html> <head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <titl

  • Python基于动态规划算法解决01背包问题实例

    本文实例讲述了Python基于动态规划算法解决01背包问题.分享给大家供大家参考,具体如下: 在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比较,这种方式形成的问题导致了许多重叠子问题,使用动态规划来解决.n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每个物品的重量,v=[6,3,5,4,6]是每个物品的价值,先把递归的定义写出来: 然后自底向上实现,代码如下: def bag(n,c,w,v): re

  • Python基于递归算法实现的走迷宫问题

    本文实例讲述了Python基于递归算法实现的走迷宫问题.分享给大家供大家参考,具体如下: 什么是递归? 简单地理解就是函数调用自身的过程就称之为递归. 什么时候用到递归? 如果一个问题可以表示为更小规模的迭代运算,就可以使用递归算法. 迷宫问题:一个由0或1构成的二维数组中,假设1是可以移动到的点,0是不能移动到的点,如何从数组中间一个值为1的点出发,每一只能朝上下左右四个方向移动一个单位,当移动到二维数组的边缘,即可得到问题的解,类似的问题都可以称为迷宫问题. 在python中可以使用list

随机推荐