手把手教你Python yLab的绘制折线图的画法

Python的可视化工具有很多,数不胜数,各有优劣。本文就对其中的pylab进行介绍。之所以介绍这一款,是因为它和Matlab的强烈相似度,如果你使用过Matlab,那么相信pylab你也会很快上手。

简单的plot函数

pylab绘图,最基本的函数就是plot函数,当然如果想要将图片显示出来,需要额外添加一个show函数。

python的绘图中,numpy是一个非常常用的工具,不太熟悉的可以参考博主的另一篇博文:【Python】Python之Numpy的超实用基础详细教程。

例如:

import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y = [i*i for i in np.arange(0, 1, 0.05)]
 pylab.plot(x, y)
 pylab.show()

运行生成的图片为:

规定两个序列,只需要两个序列的长度相等,就可以以其中一个序列为横坐标,零一个序列为纵坐标,进行绘制

但是也看得出来,这样的图片是比较寒碜的,简单朴素。我们可以对线条进行一些修饰,比如线型、颜色、点型等等。只需要在plot函数中添加一个参数即可。这个参数用法比较灵活,特可以从下表的值中进行组合选择:

颜色 线型 点型
‘b' (蓝色) ‘-' (实线) ‘,' (像素)
‘g' (绿色) ‘–' (虚线) ‘o' (圆形)
‘r' (红色) ‘-.' (虚点线) ‘^' (上三角)
‘y' (黄色) ‘:' (点线) ‘s' (方形)
‘k' (黑色) ‘.' (点) ‘+' (加号)
‘w' (蓝色) ‘x' (叉形)

例如:

import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y = [i*i for i in np.arange(0, 1, 0.05)]
 pylab.plot(x, y, "b-.+")
 pylab.show()

运行生成的图片为:

如果,还想增加图例,x轴、y轴的含义和刻度,标题的信息,也可以通过添加一些函数来进行。

例如:

# -*- coding:UTF-8 -*-
import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y = [i*i for i in np.arange(0, 1, 0.05)]
 pylab.plot(x, y, "b-.+", label='line')

 pylab.xlabel('x')       # x、y轴的介绍
 pylab.ylabel('y')

 pylab.xlim([0, 1])      # x、y轴的长度区间
 pylab.ylim([0, 1])

 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)    # x、y轴的刻度
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)

 pylab.title('x-y')      # x、y的标题

 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))     # 图例的位置
 pylab.show()

运行生成的图片为:

是不是瞬间就感觉丰富了许多!

多折线绘制

当然,在很多时刻需要绘制多条折线。很明显,可以选择将多条直线绘制到同一张图片上,也可以选择在图片上绘制不同的子图。

多折线同图

将多条折线绘制到同一张图片上,这非常简单,直接再plot一条直线就可以了。

例如:

# -*- coding:UTF-8 -*-
import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y1 = [i*i for i in np.arange(0, 1, 0.05)]
 y2 = [i+i for i in np.arange(0, 1, 0.05)]
 pylab.plot(x, y1, "b-.+", label='line1')
 pylab.plot(x, y2, "r-.+", label='line2')

 pylab.xlabel('x')
 pylab.ylabel('y')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))
 pylab.show()

多折线不同图

将多条折线绘制到图片上的不同子图上,这就需要通过subplot进行区域分割和指定。

subplot(numRows, numCols, plotNum)

该函数会将这个图片分为numRows行、nulCols列,然后按照从左到右、从上到下的顺序进行编号,最左上的编号为1。plotNum参数指定子图的所在区域

例如:

# -*- coding:UTF-8 -*-
import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y1 = [i*i for i in np.arange(0, 1, 0.05)]
 y2 = [i+i for i in np.arange(0, 1, 0.05)]

 pylab.subplot(1, 2, 1)
 pylab.plot(x, y1, "b-.+", label='line1')
 pylab.xlabel('x')
 pylab.ylabel('y1')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y1')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.subplot(1, 2, 2)
 pylab.plot(x, y2, "r-.+", label='line2')
 pylab.xlabel('x')
 pylab.ylabel('y2')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y2')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.show()

运行生成的图片为:

这是比较规整的例子,如果是不规整的呢?例如,第一行两张图,第二行一张图。这就要稍微变通一下了。

第一行其实是按照2*2分法的第一个和第二个,第二行其实是按照2*1分法的第二行。这样思考就会迎刃而解了。

# -*- coding:UTF-8 -*-
import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y1 = [i*i for i in np.arange(0, 1, 0.05)]
 y2 = [i+i for i in np.arange(0, 1, 0.05)]

 pylab.subplot(2, 2, 1)
 pylab.plot(x, y1, "b-.+", label='line1')
 pylab.xlabel('x')
 pylab.ylabel('y1')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y1')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.subplot(2, 2, 2)
 pylab.plot(x, y2, "r-.+", label='line2')
 pylab.xlabel('x')
 pylab.ylabel('y2')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y2')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.subplot(2, 1, 2)
 pylab.plot(x, y1, "b-.+", label='line1')
 pylab.plot(x, y2, "r-.+", label='line2')
 pylab.xlabel('x')
 pylab.ylabel('y')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.show()

运行生成的图片为:

其他函数

除了上述函数之外,还有一些其他的常用函数。

pylab.grid()       # 网格绘制

pylab.savefig(图片存储路径, dpi=200)    # 保存为图片

掌握了这些基本的折现图的绘制函数,相信一般的折线图都可以轻松掌握。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python基于Matplotlib库简单绘制折线图的方法示例

    本文实例讲述了Python基于Matplotlib库简单绘制折线图的方法.分享给大家供大家参考,具体如下: Matplotlib画折线图,有一些离散点,想看看这些点的变动趋势: import matplotlib.pyplot as plt x1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] y1=[30,31,31,32,33,35,35,40,47,62,99,186,480] x2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1

  • Python读取Excel表格,并同时画折线图和柱状图的方法

    今日给大家分享一个Python读取Excel表格,同时采用表格中的数值画图柱状图和折线图,这里只需要几行代码便可以实. 首先我们需要安装一个Excel操作的库xlrd,这个很简单,在安装Python后直接在DOS命令下输入pip install xlrd,便可以安装成功,如果还是不行,就输入Python -m pip install xlrd.后面会附上完整的代码和截图: 这行代码就是读取本地Excel文件的: data = xlrd.open_workbook(r'C:\\Users\\ASU

  • 利用python画出折线图

    本文实例为大家分享了python画折线图的具体代码,供大家参考,具体内容如下 # encoding=utf-8 import matplotlib.pyplot as plt from pylab import * #支持中文 mpl.rcParams['font.sans-serif'] = ['SimHei'] names = ['5', '10', '15', '20', '25'] x = range(len(names)) y = [0.855, 0.84, 0.835, 0.815,

  • python使用matplotlib模块绘制多条折线图、散点图

    今天想直观的展示一下数据就用到了matplotlib模块,之前都是一张图只有一条曲线,现在想同一个图片上绘制多条曲线来对比,实现很简单,具体如下: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import random import matplotlib import matplotlib.pyplot as plt def list2mat(data_list,w): ''' 切片.转置 '

  • 修改python plot折线图的坐标轴刻度方法

    修改python plot折线图的坐标轴刻度,这里修改为整数: 代码如下: from matplotlib import pyplot as plt import matplotlib.ticker as ticker import numpy as np def std_plot(): overall_std = [34.369, 21.366, 16.516, 11.151] max_std = [36.769, 21.794, 14.390, 4.684] plt.figure() plt

  • python绘制多个曲线的折线图

    这篇文章利用的是matplotlib.pyplot.plot的工具来绘制折线图,这里先给出一个段代码和结果图: # -*- coding: UTF-8 -*- import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt #这里导入你自己的数据 #...... #...... #x_axix,train_pn_dis这些都是长度相同的list() #开始画图 sub_axix = filter(lambda

  • python画折线图的程序

    前做PPT要用到折线图,嫌弃EXCEL自带的看上去不好看,就用python写了一个画折线图的程序. import matplotlib.pyplot as plt x=[1,2,3,4,5,6] y1=[35000,85000,120000] y2=[45000,85000,100000] y3=[25000,65000,90000] point1=180180 point2=200000 plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中

  • python绘制双Y轴折线图以及单Y轴双变量柱状图的实例

    近来实验室的师姐要发论文,由于论文交稿时间临近,有一些杂活儿需要处理,作为实验室资历最浅的一批,我这个实习生也就责无旁贷地帮忙当个下手.今天师姐派了一个小活,具体要求是: 给一些训练模型的迭代次数,训练精度的数据,让我做成图表形式展示出来,一方面帮助检查模型训练时的不足,另一方面来看样本数目和预测精度之间的联系,数据具体格式如下: Iteration 1500 label train test right acc 12 143 24 24 1.0 160 92 16 15 0.9375 100

  • python绘制简单折线图代码示例

    1.画最简单的直线图 代码如下: import numpy as np import matplotlib.pyplot as plt x=[0,1] y=[0,1] plt.figure() plt.plot(x,y) plt.savefig("easyplot.jpg") 结果如下: 代码解释: #x轴,y轴 x=[0,1] y=[0,1] #创建绘图对象 plt.figure() #在当前绘图对象进行绘图(两个参数是x,y轴的数据) plt.plot(x,y) #保存图象 plt

  • python2.7使用plotly绘制本地散点图和折线图

    本人在学习使用Python和plotly处理数据时,经过两个小时艰难试错,终于完成了散点图和折线图的实例.在使用过程中遇到一个大坑,因为官方给出的案例是用在线存储的,所以需要安装jupyter(也就是ipython)才能使用notebook来处理生成的文件,一开始我没太懂iplot和plot之间的差异,导致浪费了很多时间. 重要提示:最新的jupyter不支持Python3.2及以下版本. 最后我只能继续采用本地文件的形式来解决这个问题了.下面放出我的测试代码,被注释掉的是官方给出的代码以及离线

随机推荐