python opencv实现图像边缘检测
本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤:
1、去噪
如cv2.GaussianBlur()等函数;
2、计算图像梯度
图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式:
3、非极大值抑制
在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点。对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的。如下图所示:
4、滞后阈值
现在要确定那些边界才是真正的边界。这时我们需要设置两个阈值:minVal 和maxVal。当图像的灰度梯度高于maxVal 时被认为是真的边界,那些低于minVal 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。如下图:
在Python Opencv接口中,提供了Canny函数,可以对图像进行一键执行边缘检测。
接下来,利用Canny函数进行边缘检测的实验。
Canny函数需要指定几个参数:
1、需要进行边缘检测的原图
2、阈值下限
3、阈值上限
我们为了能够看到不同阈值范围对边缘检测结果的影响,设置了两个滑动条,来分别表示阈值上下限。
完整代码如下:
# -*- coding: utf-8 -*- """ Created on Thu Sep 13 14:23:32 2018 @author: Leon 内容: 对图片进行边缘检测; 添加滑动条,可自由调整阈值上下限。 """ import cv2 import numpy as np def nothing(x): pass cv2.namedWindow('Canny',0) # 创建滑动条 cv2.createTrackbar('minval','Canny',0,255,nothing) cv2.createTrackbar('maxval','Canny',0,255,nothing) img = cv2.imread('Tree.jpg',0) # 高斯滤波去噪 img = cv2.GaussianBlur(img,(3,3),0) edges =img k=0 while(1): key = cv2.waitKey(50) & 0xFF if key == ord('q'): break # 读取滑动条数值 minval = cv2.getTrackbarPos('minval','Canny') maxval = cv2.getTrackbarPos('maxval','Canny') edges = cv2.Canny(img,minval,maxval) # 拼接原图与边缘监测结果图 img_2 = np.hstack((img,edges)) cv2.imshow('Canny',img_2) cv2.destroyAllWindows()
效果如图:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
python中使用OpenCV进行人脸检测的例子
OpenCV的人脸检测功能在一般场合还是不错的.而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码. 写代码之前应该先安装python-opencv: 复制代码 代码如下: $ sudo apt-get install python-opencv 具体原理就不多说了,可以参考一下这篇文章.直接上源码. 复制代码 代码如下: #!/usr/bin/python# -*- coding: UTF-8 -*- # face_detect.py # Face De
-
python结合opencv实现人脸检测与跟踪
模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和python的比较新的版本,推荐opencv2.4.X和python2.7.X. 直接去官网下载就ok了,python安装时一路next就行,下载的opencv.exe
-
OpenCV-Python实现轮廓检测实例分析
相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV检测并绘制轮廓. 提示: 转载请详细注明原作者及出处,谢谢! 本文介绍在OpenCV-Python中检测并绘制轮廓的方法. 本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识.笔者推荐清华大学出版社的<图像处理与计算机视觉算法及应用(第2版)>. 轮廓检测 轮廓检测也是图像处理中经常用到的.Ope
-
python+opencv轮廓检测代码解析
首先大家可以对OpenCV有个初步的了解,可以参考:简单了解OpenCV 轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线.检测轮廓的工作对形状分析和物体检测与识别都非常有用. 在轮廓检测之前,首先要对图片进行二值化或者Canny边缘检测.在OpenCV中,寻找的物体是白色的,而背景必须是黑色的,因此图片预处理时必须保证这一点. import cv2 #读入图片 img = cv2.imread("1.png") # 必须先转化成灰度图 gray = cv2
-
python opencv实现图像边缘检测
本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的
-
Python OpenCV 基于图像边缘提取的轮廓发现函数
基础知识铺垫 在图像中,轮廓可以简单的理解为连接具有相同颜色的所有连续点(边界)的曲线,轮廓可用于形状分析和对象检测.识别等领域. 轮廓发现的原理:先通过阈值分割提取目标物体,再通过边缘检测提取目标物体轮廓. 一个轮廓就是一系列的点(像素),这些点构成了一个有序的点集合. 使用 cv2.findContours 函数可以用来检测图像的边缘. 函数原型说明 contours, hierarchy = cv2.findContours(image, mode, method[, contours[,
-
详解Python+OpenCV实现图像二值化
目录 一.图像二值化 1.效果 2.源码 二.图像二值化(调节阈值) 1.源码一 2.源码二 一.图像二值化 1.效果 2.源码 import cv2 import numpy as np import matplotlib.pyplot as plt # img = cv2.imread('test.jpg') #这几行是对图像进行降噪处理,但事还存在一些问题. # dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) # plt
-
Python+OpenCV之图像轮廓详解
目录 1. 图像轮廓 1.1 findContours介绍 1.2 绘制轮廓 1.3 轮廓特征 2. 轮廓近似 2.1 轮廓 2.2 边界矩形 2.3 外界多边形及面积 1. 图像轮廓 1.1 findContours介绍 cv2.findContours(img, mode, method) mode:轮廓检索模式 RETR_EXTERNAL :只检索最外面的轮廓: RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中: RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是
-
Python Opencv实现图像轮廓识别功能
本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th
-
python opencv对图像进行旋转且不裁剪图片的实现方法
最近在做深度学习时需要用到图像处理相关的操作,在度娘上找到的图片旋转方法千篇一律,旋转完成的图片都不是原始大小,很苦恼,于是google到歪果仁的网站扒拉了一个方法,亲测好用,再次嫌弃天下文章一大抄的现象,虽然我也是抄歪果仁的. 废话不多说了,直接贴代码了. def rotate_bound(image, angle): # grab the dimensions of the image and then determine the # center (h, w) = image.shape[
-
Python+OpenCV实现图像融合的原理及代码
根据导师作业安排,在学习数字图像处理(刚萨雷斯版)第六章 彩色图像处理 中的彩色模型后,导师安排了一个比较有趣的作业: 融合原理为: 1 注意:遥感原RGB图image和灰度图Grayimage为测试用的输入图像: 2 步骤:(1)将RGB转换为HSV空间(H:色调,S:饱和度,V:明度): (2)用Gray图像诶换掉HSV中的V: (3)替换后的HSV转换回RGB空间即可得到结果. 书上只介绍了HSI彩色模型,并没有说到HSV,所以需要网上查找资料. Python代码如下: import cv
-
Python OpenCV处理图像之滤镜和图像运算
本文实例为大家分享了Python OpenCV处理图像之滤镜和图像运算的具体代码,供大家参考,具体内容如下 0x01. 滤镜 喜欢自拍的人肯定都知道滤镜了,下面代码尝试使用一些简单的滤镜,包括图片的平滑处理.灰度化.二值化等: import cv2.cv as cv image=cv.LoadImage('img/lena.jpg', cv.CV_LOAD_IMAGE_COLOR) #Load the image cv.ShowImage("Original", image) grey
-
python opencv判断图像是否为空的实例
如下所示: import cv2 im = cv2.imread('2.jpg') if im is None: print("图像为空") # cv2.imshow("ss", im) # cv2.waitKey(0) 以上这篇python opencv判断图像是否为空的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
python Opencv计算图像相似度过程解析
这篇文章主要介绍了python Opencv计算图像相似度过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你儿子. 还有其他物品.什么桌子带腿.镜子反光能在里面倒影出东西,各种各样的特征,我们通过学习.归纳,自然而然能够很快识别分类出新物品.
随机推荐
- MongoDB开源数据库开发工具dbKoda
- Angular表格神器ui-grid应用详解
- jQuery分页插件jquery.pagination.js使用方法解析
- JavaScript学习笔记之JS对象
- 2007年网络收藏夹网址收集
- HTTP 500内部服务器错误的解决方法(重装IIS)
- 谈谈xcopy中的排除copy
- PHP新手上路(十四)
- Android中Shape的用法详解
- 详解如何使用Vue2做服务端渲染
- js substring从右边获取指定长度字符串(示例代码)
- Android计时器的三种实现方式(Chronometer、Timer、handler)
- 通过lua来配置实现Nginx服务器的防盗链功能
- 使用Jquery来实现可以输入值的下拉选单 雏型
- PHP文件下载实例代码浅析
- 深入解析Java编程中面向字节流的一些应用
- C++ 中时间与时间戳的转换实例详解
- 详解如何用babel转换es6的class语法
- java后台判断客户端是手机/PC并返回不同页面的实例
- 微信 jssdk 签名错误invalid signature的解决方法