pandas创建新Dataframe并添加多行的实例

处理数据的时候,偶然遇到要把一个Dataframe中的某些行添加至一个空白的Dataframe中的问题。

最先想到的方法是创建Dataframe,从原有的Dataframe中逐行筛选出指定的行(类型为pandas的Series),并使用append方法进行添加。这种方法速度很慢,而且添加之后总会出现奇怪的问题,数据类型也不对。

较快的方法为,首先创建空的list,对原有的Dataframe进行逐行筛选,筛选出的行转化为dict类型,append进list中。全部添加完毕后,再将整个list转化为Dataframe格式。

代码如下:

a = []
for line in insert_lines:
  line = dict(line)
  a.append(line)
a = pandas.Dataframe(a) 

以上这篇pandas创建新Dataframe并添加多行的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • 对pandas的dataframe绘图并保存的实现方法
  • 对Python中DataFrame按照行遍历的方法
  • python之pandas用法大全
  • Python遍历pandas数据方法总结
(0)

相关推荐

  • python之pandas用法大全

    一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd 2.导入CSV或者xlsx文件: df = pd.DataFrame(pd.read_csv('name.csv',header=1)) df = pd.DataFrame(pd.read_excel('name.xlsx')) 3.用pandas创建数据表: df = pd.DataFrame({"id":[1001

  • 对pandas的dataframe绘图并保存的实现方法

    对dataframe绘图并保存: ax = df.plot() fig = ax.get_figure() fig.savefig('fig.png') 可以制定列,对该列各取值作统计: label_dis = df.label.value_counts() ax = label_dis.plot(title='label distribution', kind='bar', figsize=(18, 12)) fig = ax.get_figure() fig.savefig('label_d

  • 对Python中DataFrame按照行遍历的方法

    在做分类模型时候,需要在DataFrame中按照行获取数据以便于进行训练和测试. import pandas as pd dict=[[1,2,3,4,5,6],[2,3,4,5,6,7],[3,4,5,6,7,8],[4,5,6,7,8,9],[5,6,7,8,9,10]] data=pd.DataFrame(dict) print(data) for indexs in data.index: print(data.loc[indexs].values[0:-1]) 实验结果: /usr/b

  • Python遍历pandas数据方法总结

    前言 Pandas是python的一个数据分析包,提供了大量的快速便捷处理数据的函数和方法.其中Pandas定义了Series 和 DataFrame两种数据类型,这使数据操作变得更简单.Series 是一种一维的数据结构,类似于将列表数据值与索引值相结合.DataFrame 是一种二维的数据结构,接近于电子表格或者mysql数据库的形式. 在数据分析中不可避免的涉及到对数据的遍历查询和处理,比如我们需要将dataframe两列数据两两相除,并将结果存储于一个新的列表中.本文通过该例程介绍对pa

  • pandas创建新Dataframe并添加多行的实例

    处理数据的时候,偶然遇到要把一个Dataframe中的某些行添加至一个空白的Dataframe中的问题. 最先想到的方法是创建Dataframe,从原有的Dataframe中逐行筛选出指定的行(类型为pandas的Series),并使用append方法进行添加.这种方法速度很慢,而且添加之后总会出现奇怪的问题,数据类型也不对. 较快的方法为,首先创建空的list,对原有的Dataframe进行逐行筛选,筛选出的行转化为dict类型,append进list中.全部添加完毕后,再将整个list转化为

  • python pandas库中DataFrame对行和列的操作实例讲解

    用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S

  • Pandas.DataFrame重置列的行名实现(set_index)

    目录 set_index()的使用方法 基本用法 将指定的列保留为数据:参数drop 分配多索引 将索引更改为另一列(重置) 更改原始对象:参数inplace 读取csv文件等时指定索引 使用索引(行名)提取(选择)行和元素 pandas.DataFrame中的现有列分配给索引index(行名,行标签).为索引指定唯一的名称很方便,因为使用loc,at选择(提取)元素时很容易理解. 将描述以下内容. set_index()的使用方法 基本用法 将指定的列保留为数据:参数drop 分配多索引 将索

  • pandas创建DataFrame对象失败的解决方法

    目录 报错代码 报错翻译 报错原因 解决方法 创建DataFrame对象的四种方法 1. list列表构建DataFrame 2. dict字典构建DataFrame 3. ndarray创建DataFrame 4. Series创建DataFrame 报错代码 粉丝群一个小伙伴想pandas创建DataFrame对象,但是发生了报错(当时他心里瞬间凉了一大截,跑来找我求助,然后顺利帮助他解决了,顺便记录一下希望可以帮助到更多遇到这个bug不会解决的小伙伴),报错代码如下: import pan

  • 利用Pandas 创建空的DataFrame方法

    平时写pyhton的时候习惯初始化一些list啊,tuple啊,dict啊这样的.一用到Pandas的DataFrame数据结构也就总想着初始化一个空的DataFrame,虽然没什么太大的用处,不过还是记录一下: # 创建一个空的 DataFrame df_empty = pd.DataFrame(columns=['A', 'B', 'C', 'D']) 上面创建的DataFrame有4列,每一行没有成员是空的. 输出一下结果: Empty DataFrame Columns: [A, B,

  • pandas.DataFrame选取/排除特定行的方法

    pandas.DataFrame选取特定行 使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. >>> df = pd.DataFrame([['GD', 'GX', 'FJ'], ['SD', 'SX', 'BJ'], ['HN', 'HB', 'AH'], ['HEN', 'HEN', 'HL

  • 用pandas中的DataFrame时选取行或列的方法

    如下所示: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w #选择表格

  • pandas创建DataFrame的7种方法小结

    笔者在学习pandas,在学习过程中总结了一下创建dataframe的方法,通过查阅资料总结遗下几种方法,如果你有其他的方法欢迎留言补充. 练习代码 请点击此处下载 学习环境: 第一种: 用Python中的字典生成 第二种: 利用指定的列内容.索引以及数据 第三种:通过读取文件,可以是json,csv,excel等等. 本文例子就用excel, 上篇博客笔者已经用csv举例了.这里要注意,如果用excel请先安装xlrd这个包 这个文件笔者放在代码同目录 第四种:用numpy中的array生成

  • pandas创建DataFrame的方式小结

    如果你是一个pandas初学者,那么不知道你会不会像我一样.在学用列表或者数组创建DataFrame时理不清怎样用数据生成以及想要形状的的Dataframe,那么,现在,你不用自己琢磨了,我这里给你整理了一下,现在我们就来看看这三种生成Dataframe的方式. 1.用传入列表或者数组创建DataFrame 采用列表创建DataFrame nums = [[i for i in range(3)] for _ in range(10)] nums colu = [f'col_{i}' for i

  • Pandas创建DataFrame提示:type object 'object' has no attribute 'dtype'解决方案

    目录 发现问题 原因分析: 解决方案: 总结 发现问题 pandas版本0.25.3 import pandas as pd symbol_info_columns = ['1', '持仓方向', '持仓量', '持仓收益率', '持仓收益', '持仓均价', '当前价格', '最大杠杆'] # v3 symbol_config = {'BTC': 'BTC-USDT-210924', 'LTC': 'LTC-USDT-210924', 'EOS': 'EOS-USDT-210924', 'ET

随机推荐