python使用TensorFlow进行图像处理的方法

一、图片的放大缩小

在使用TensorFlow进行图片的放大缩小时,有三种方式:

1、tf.image.resize_nearest_neighbor():临界点插值
2、tf.image.resize_bilinear():双线性插值
3、tf.image.resize_bicubic():双立方插值算法

下面是示例代码:

# encoding:utf-8
# 使用TensorFlow进行图片的放缩
import tensorflow as tf
import cv2
import numpy as np

# 读取图片
img = cv2.imread("1.jpg")
# 显示原始图片
cv2.imshow("resource", img)

h, w, depth = img.shape
img = np.expand_dims(img, 0)

# 临界点插值
nn_image = tf.image.resize_nearest_neighbor(img, size=[h+100, w+100])
nn_image = tf.squeeze(nn_image)
with tf.Session() as sess:
  # 运行 'init' op
  nn_image = sess.run(nn_image)
nn_image = np.uint8(nn_image)

# 双线性插值
bi_image = tf.image.resize_bilinear(img, size=[h+100, w+100])
bi_image = tf.squeeze(bi_image)
with tf.Session() as sess:
  # 运行 'init' op
  bi_image = sess.run(bi_image)
bi_image = np.uint8(bi_image)

# 双立方插值算法
bic_image = tf.image.resize_bicubic(img, size=[h+100, w+100])
bic_image = tf.squeeze(bic_image)
with tf.Session() as sess:
  # 运行 'init' op
  bic_image = sess.run(bic_image)
bic_image = np.uint8(bic_image)
# 显示结果图片
cv2.imshow("result_nn", nn_image)
cv2.imshow("result_bi", bi_image)
cv2.imshow("result_bic", bic_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、图片的亮度调整

在使用TensorFlow进行图片的亮度调整时,有两种方式:
1、tf.image.adjust_brightness():亮度的全局调整
2、tf.image.random_brightness():亮度的随机调整

下面是示例代码:

# encoding:utf-8
# 使用TensorFlow调整图片的亮度
import tensorflow as tf
import cv2
import numpy as np

# 读取图片
img = cv2.imread("1.jpg")
# 显示原始图片
cv2.imshow("resource", img)

img = np.expand_dims(img, 0)
# adjust_brightness
bright_img = tf.image.adjust_brightness(img, delta=.5)
bright_img = tf.squeeze(bright_img)
with tf.Session() as sess:
  # 运行 'init' op
  result = sess.run(bright_img)
result = np.uint8(result)

rand_image = tf.image.random_brightness(img, max_delta=.5)
rand_image = tf.squeeze(rand_image)
with tf.Session() as sess:
  # 运行 'init' op
  result2 = sess.run(rand_image)
result2 = np.uint8(result2)

cv2.imshow("result", result)
cv2.imshow("result2", result2)
cv2.waitKey(0)
cv2.destroyAllWindows()

三、图片的对比度调整

在使用TensorFlow进行图片的对比度调整时,有两种方式:
1、tf.image.adjust_contrast():对比度的全局调整
2、tf.image.random_contrast():对比度的随机调整

代码与图片的亮度调整类似,这里就不赘述了。

四、图片的饱和度调整

在使用TensorFlow进行图片的饱和度调整时,使用下列函数:

tf.image.adjust_saturation() 

饱和度调整范围为0~5

下面示例代码:

# encoding:utf-8
# 使用TensorFlow调整图片的亮度
import tensorflow as tf
import cv2
import numpy as np

# 读取图片
img = cv2.imread("1.jpg")
# 显示原始图片
cv2.imshow("resource", img)

# 图像的饱和度调整
stand_img = tf.image.adjust_saturation(img, saturation_factor=2.4)
with tf.Session() as sess:
  # 运行 'init' op
  result = sess.run(stand_img)
result = np.uint8(result)

cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

五、图片的标准化

在使用TensorFlow对图像数据进行训练之前,常需要执行图像的标准化操作,它与归一化是有区别的,归一化不改变图像的直方图,标准化操作会改变图像的直方图。标准化操作使用如下函数:

tf.image.per_image_standardization() 

下面是示例代码:

# encoding:utf-8
# 使用TensorFlow调整图片的亮度
import tensorflow as tf
import cv2
import numpy as np

# 读取图片
img = cv2.imread("1.jpg")
# 显示原始图片
cv2.imshow("resource", img)

# 图像标准化操作
stand_img = tf.image.per_image_standardization(img)
with tf.Session() as sess:
  # 运行 'init' op
  result = sess.run(stand_img)
result = np.uint8(result)

cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

六、图像的色彩空间转化

使用TensorFlow进行图像的色彩空间转化,包括HSV、RGB、灰度色彩空间之间的转化,使用的函数如下所示:

tf.image.rgb_ to_hsv()
tf.image.rgb_ to_grayscale()
tf.image.hsv_ to_rgb() 

代码与图像的标准化操作的代码相似,这里不再赘述。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python生成tensorflow输入输出的图像格式的方法
  • 详解tensorflow训练自己的数据集实现CNN图像分类
(0)

相关推荐

  • python生成tensorflow输入输出的图像格式的方法

    TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow:也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取.下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出. import cv2 import numpy as np import h5py height = 460 width = 345 w

  • 详解tensorflow训练自己的数据集实现CNN图像分类

    利用卷积神经网络训练图像数据分为以下几个步骤 1.读取图片文件 2.产生用于训练的批次 3.定义训练的模型(包括初始化参数,卷积.池化层等参数.网络) 4.训练 1 读取图片文件 def get_files(filename): class_train = [] label_train = [] for train_class in os.listdir(filename): for pic in os.listdir(filename+train_class): class_train.app

  • python使用TensorFlow进行图像处理的方法

    一.图片的放大缩小 在使用TensorFlow进行图片的放大缩小时,有三种方式: 1.tf.image.resize_nearest_neighbor():临界点插值 2.tf.image.resize_bilinear():双线性插值 3.tf.image.resize_bicubic():双立方插值算法 下面是示例代码: # encoding:utf-8 # 使用TensorFlow进行图片的放缩 import tensorflow as tf import cv2 import numpy

  • python人工智能tensorflow函数tensorboard使用方法

    目录 tensorboard相关函数及其常用参数设置 1 with tf.name_scope(layer_name): 2 tf.summary.histogram(layer_name+"/biases",biases) 3 tf.summary.scalar(“loss”,loss) 4 tf.summary.merge_all() 5 tf.summary.FileWriter(“logs/”,sess.graph) 6 write.add_summary(result,i)

  • Python通过TensorFLow进行线性模型训练原理与实现方法详解

    本文实例讲述了Python通过TensorFLow进行线性模型训练原理与实现方法.分享给大家供大家参考,具体如下: 1.相关概念 例如要从一个线性分布的途中抽象出其y=kx+b的分布规律 特征是输入变量,即简单线性回归中的 x 变量.简单的机器学习项目可能会使用单个特征,而比较复杂的机器学习项目可能会使用数百万个特征. 标签是我们要预测的事物,即简单线性回归中的 y 变量. 样本是指具体的数据实例.有标签样本是指具有{特征,标签}的数据,用于训练模型,总结规律.无标签样本只具有特征的数据x,通过

  • python人工智能tensorflow函数tf.get_variable使用方法

    目录 参数数量及其作用 例子 参数数量及其作用 该函数共有十一个参数,常用的有: 名称name 变量规格shape 变量类型dtype 变量初始化方式initializer 所属于的集合collections def get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partiti

  • python人工智能tensorflow函数tf.get_collection使用方法

    目录 参数数量及其作用 例子 参数数量及其作用 该函数共有两个参数,分别是key和scope. def get_collection(key, scope=None) Wrapper for Graph.get_collection() using the default graph. See tf.Graph.get_collection for more details. Args: key: The key for the collection. For example, the `Gra

  • python人工智能tensorflow函数np.random模块使用方法

    目录 np.random模块常用的一些方法介绍 例子 numpy.random.rand(d0, d1, …, dn): numpy.random.randn(d0, d1, …, dn): numpy.random.randint(low, high=None, size=None, dtype=‘I’): numpy.random.uniform(low=0.0, high=1.0, size=None): numpy.random.normal(loc=0.0, scale=1.0, si

  • python人工智能tensorflow函数tf.assign使用方法

    目录 参数数量及其作用 例子 参数数量及其作用 该函数共有五个参数,分别是: 被赋值的变量 ref 要分配给变量的值 value. 是否验证形状 validate_shape 是否进行锁定保护 use_locking 名称 name def assign(ref, value, validate_shape=None, use_locking=None, name=None) Update 'ref' by assigning 'value' to it. This operation outp

  • python人工智能tensorflow函数tf.layers.dense使用方法

    目录 参数数量及其作用 部分参数解释: 示例 参数数量及其作用 tf.layers.dense用于添加一个全连接层. 函数如下: tf.layers.dense( inputs, #层的输入 units, #该层的输出维度 activation=None, #激活函数 use_bias=True, kernel_initializer=None, # 卷积核的初始化器 bias_initializer=tf.zeros_initializer(), # 偏置项的初始化器 kernel_regul

  • python人工智能tensorflow函数tf.nn.dropout使用方法

    目录 前言 tf.nn.dropout函数介绍 例子 代码 keep_prob = 0.5 keep_prob = 1 前言 神经网络在设置的神经网络足够复杂的情况下,可以无限逼近一段非线性连续函数,但是如果神经网络设置的足够复杂,将会导致过拟合(overfitting)的出现,就好像下图这样. 看到这个蓝色曲线,我就知道: 很明显蓝色曲线是overfitting的结果,尽管它很好的拟合了每一个点的位置,但是曲线是歪歪曲曲扭扭捏捏的,这个的曲线不具有良好的鲁棒性,在实际工程实验中,我们更希望得到

随机推荐