webpack构建的详细流程探底

作为模块加载和打包神器,只需配置几个文件,加载各种 loader 就可以享受无痛流程化开发。但对于 webpack 这样一个复杂度较高的插件集合,它的整体流程及思想对我们来说还是很透明的。

本文旨在搞清楚从命令行下敲下 webpack 命令,或者配置 npm script 后执行 package.json 中的命令,到工程目录下出现打包的后的 bundle 文件的过程中,webpack都替我们做了哪些工作。

测试用webpack版本为 webpack@3.4.1

webpack.config.js中定义好相关配置,包括 entry、output、module、plugins等,命令行执行 webpack 命令,webpack 便会根据配置文件中的配置进行打包处理文件,并生成最后打包后的文件。

第一步:执行 webpack 命令时,发生了什么?(bin/webpack.js)

命令行执行 webpack 时,如果全局命令行中未找到webpack命令的话,执行本地的node-modules/bin/webpack.js 文件。

在bin/webpack.js中使用 yargs库 解析了命令行的参数,处理了 webpack 的配置对象 options,调用 processOptions() 函数。

// 处理编译相关,核心函数
function processOptions(options) {
 // promise风格的处理,暂时还没遇到这种情况的配置
 if(typeof options.then === "function") {...}
 // 处理传入的options为数组的情况
 var firstOptions = [].concat(options)[0];
 var statsPresetToOptions = require("../lib/Stats.js").presetToOptions;
 // 设置输出的options
 var outputOptions = options.stats;
 if(typeof outputOptions === "boolean" || typeof outputOptions === "string") {
 outputOptions = statsPresetToOptions(outputOptions);
 } else if(!outputOptions) {
 outputOptions = {};
 }
 // 处理各种现实相关的参数
 ifArg("display", function(preset) {
 outputOptions = statsPresetToOptions(preset);
 });
 ...
 // 引入lib下的webpack.js,入口文件
 var webpack = require("../lib/webpack.js");
 // 设置最大错误追踪堆栈
 Error.stackTraceLimit = 30;
 var lastHash = null;
 var compiler;
 try {
 // 编译,这里是关键,需要进入lib/webpack.js文件查看
 compiler = webpack(options);
 } catch(e) {
 // 错误处理
 var WebpackOptionsValidationError = require("../lib/WebpackOptionsValidationError");
 if(e instanceof WebpackOptionsValidationError) {
 if(argv.color)
 console.error("\u001b[1m\u001b[31m" + e.message + "\u001b[39m\u001b[22m");
 else
 console.error(e.message);
 process.exit(1); // eslint-disable-line no-process-exit
 }
 throw e;
 }
 // 显示相关参数处理
 if(argv.progress) {
 var ProgressPlugin = require("../lib/ProgressPlugin");
 compiler.apply(new ProgressPlugin({
 profile: argv.profile
 }));
 }
 // 编译完后的回调函数
 function compilerCallback(err, stats) {}
 // watch模式下的处理
 if(firstOptions.watch || options.watch) {
 var watchOptions = firstOptions.watchOptions || firstOptions.watch || options.watch || {};
 if(watchOptions.stdin) {
 process.stdin.on("end", function() {
 process.exit(0); // eslint-disable-line
 });
 process.stdin.resume();
 }
 compiler.watch(watchOptions, compilerCallback);
 console.log("\nWebpack is watching the files…\n");
 } else
 // 调用run()函数,正式进入编译过程
 compiler.run(compilerCallback);
}

第二步: 调用 webpack,返回 compiler 对象的过程(lib/webpack.js)

如下图所示,lib/webpack.js 中的关键函数为 webpack,其中定义了编译相关的一些操作。

"use strict";
const Compiler = require("./Compiler");
const MultiCompiler = require("./MultiCompiler");
const NodeEnvironmentPlugin = require("./node/NodeEnvironmentPlugin");
const WebpackOptionsApply = require("./WebpackOptionsApply");
const WebpackOptionsDefaulter = require("./WebpackOptionsDefaulter");
const validateSchema = require("./validateSchema");
const WebpackOptionsValidationError = require("./WebpackOptionsValidationError");
const webpackOptionsSchema = require("../schemas/webpackOptionsSchema.json");
// 核心方法,调用该方法,返回Compiler的实例对象compiler
function webpack(options, callback) {...}
exports = module.exports = webpack;
// 设置webpack对象的常用属性
webpack.WebpackOptionsDefaulter = WebpackOptionsDefaulter;
webpack.WebpackOptionsApply = WebpackOptionsApply;
webpack.Compiler = Compiler;
webpack.MultiCompiler = MultiCompiler;
webpack.NodeEnvironmentPlugin = NodeEnvironmentPlugin;
webpack.validate = validateSchema.bind(this, webpackOptionsSchema);
webpack.validateSchema = validateSchema;
webpack.WebpackOptionsValidationError = WebpackOptionsValidationError;
// 对外暴露一些插件
function exportPlugins(obj, mappings) {...}
exportPlugins(exports, {...});
exportPlugins(exports.optimize = {}, {...});

接下来看在webpack函数中主要定义了哪些操作

// 核心方法,调用该方法,返回Compiler的实例对象compiler
function webpack(options, callback) {
 // 验证是否符合格式
 const webpackOptionsValidationErrors = validateSchema(webpackOptionsSchema, options);
 if(webpackOptionsValidationErrors.length) {
 throw new WebpackOptionsValidationError(webpackOptionsValidationErrors);
 }
 let compiler;
 // 传入的options为数组的情况,调用MultiCompiler进行处理,目前还没遇到过这种情况的配置
 if(Array.isArray(options)) {
 compiler = new MultiCompiler(options.map(options => webpack(options)));
 } else if(typeof options === "object") {
 // 配置options的默认参数
 new WebpackOptionsDefaulter().process(options);
 // 初始化一个Compiler的实例
 compiler = new Compiler();
 // 设置context的默认值为进程的当前目录,绝对路径
 compiler.context = options.context;
 // 定义compiler的options属性
 compiler.options = options;
 // Node环境插件,其中设置compiler的inputFileSystem,outputFileSystem,watchFileSystem,并定义了before-run的钩子函数
 new NodeEnvironmentPlugin().apply(compiler);
 // 应用每个插件
 if(options.plugins && Array.isArray(options.plugins)) {
 compiler.apply.apply(compiler, options.plugins);
 }
 // 调用environment插件
 compiler.applyPlugins("environment");
 // 调用after-environment插件
 compiler.applyPlugins("after-environment");
 // 处理compiler对象,调用一些必备插件
 compiler.options = new WebpackOptionsApply().process(options, compiler);
 } else {
 throw new Error("Invalid argument: options");
 }
 if(callback) {
 if(typeof callback !== "function") throw new Error("Invalid argument: callback");
 if(options.watch === true || (Array.isArray(options) && options.some(o => o.watch))) {
 const watchOptions = Array.isArray(options) ? options.map(o => o.watchOptions || {}) : (options.watchOptions || {});
 return compiler.watch(watchOptions, callback);
 }
 compiler.run(callback);
 }
 return compiler;
}

webpack函数中主要做了以下两个操作,

  • 实例化 Compiler 类。该类继承自 Tapable 类,Tapable 是一个基于发布订阅的插件架构。webpack 便是基于Tapable的发布订阅模式实现的整个流程。Tapable 中通过 plugins 注册插件名,以及对应的回调函数,通过 apply,applyPlugins,applyPluginsWater,applyPluginsAsync等函数以不同的方式调用注册在某一插件下的回调。
  • 通过WebpackOptionsApply 处理webpack compiler对象,通过 compiler.apply的方式调用了一些必备插件,在这些插件中,注册了一些 plugins,在后面的编译过程中,通过调用一些插件的方式,去处理一些流程。

第三步:调用compiler的run的过程(Compiler.js)

run()调用

run函数中主要触发了before-run事件,在before-run事件的回调函数中触发了run事件,run事件中调用了readRecord函数读取文件,并调用compile()函数进行编译。

compile()调用

compile函数中定义了编译的相关流程,主要有以下流程:

  • 创建编译参数
  • 触发 before-compile 事件,
  • 触发 compile 事件,开始编译
  • 创建 compilation对象,负责整个编译过程中具体细节的对象
  • 触发 make 事件,开始创建模块和分析其依赖
  • 根据入口配置的类型,决定是调用哪个plugin中的 make 事件的回调。如单入口的 entry,调用的是SingleEntryPlugin.js下 make 事件注册的回调函数,其他多入口同理。
  • 调用 compilation 对象的 addEntry 函数,创建模块以及依赖。
  • make 事件的回调函数中,通过seal 封装构建的结果
  • run 方法中定义的 onCompiled回调函数被调用,完成emit过程,将结果写入至目标文件

compile函数的定义

compile(callback) {
 // 创建编译参数,包括模块工厂和编译依赖参数数组
 const params = this.newCompilationParams();
 // 触发before-compile 事件,开始整个编译过程
 this.applyPluginsAsync("before-compile", params, err => {
 if(err) return callback(err);
 // 触发compile事件
 this.applyPlugins("compile", params);
 // 构建compilation对象,compilation对象负责具体的编译细节
 const compilation = this.newCompilation(params);
 // 触发make事件,对应的监听make事件的回调函数在不同的EntryPlugin中注册,比如singleEntryPlugin
 this.applyPluginsParallel("make", compilation, err => {
 if(err) return callback(err);
 compilation.finish();
 compilation.seal(err => {
 if(err) return callback(err);
 this.applyPluginsAsync("after-compile", compilation, err => {
 if(err) return callback(err);
 return callback(null, compilation);
 });
 });
 });
 });
}

【问题】make 事件触发后,有哪些插件中注册了make事件并得到了运行的机会呢?

以单入口entry配置为例,在EntryOptionPlugin插件中定义了,不同配置的入口应该调用何种插件进行解析。不同配置的入口插件中注册了对应的 make 事件回调函数,在make事件触发后被调用。

如下所示:

一个插件的apply方法是一个插件的核心方法,当说一个插件被调用时主要是其apply方法被调用。

EntryOptionPlugin 插件在webpackOptionsApply中被调用,其内部定义了使用何种插件来解析入口文件。

const SingleEntryPlugin = require("./SingleEntryPlugin");
const MultiEntryPlugin = require("./MultiEntryPlugin");
const DynamicEntryPlugin = require("./DynamicEntryPlugin");
module.exports = class EntryOptionPlugin {
 apply(compiler) {
 compiler.plugin("entry-option", (context, entry) => {
 function itemToPlugin(item, name) {
 if(Array.isArray(item)) {
 return new MultiEntryPlugin(context, item, name);
 } else {
 return new SingleEntryPlugin(context, item, name);
 }
 }
 // 判断entry字段的类型去调用不同的入口插件去处理
 if(typeof entry === "string" || Array.isArray(entry)) {
 compiler.apply(itemToPlugin(entry, "main"));
 } else if(typeof entry === "object") {
 Object.keys(entry).forEach(name => compiler.apply(itemToPlugin(entry[name], name)));
 } else if(typeof entry === "function") {
 compiler.apply(new DynamicEntryPlugin(context, entry));
 }
 return true;
 });
 }
};

entry-option 事件被触发时,EntryOptionPlugin 插件做了这几个事情:

判断入口的类型,通过 entry 字段来判断,对应了 entry 字段为 string object function的三种情况

每种不同的类型调用不同的插件去处理入口的配置。大致处理逻辑如下:

  • 数组类型的entry调用multiEntryPlugin插件去处理,对应了多入口的场景
  • function的entry调用了DynamicEntryPlugin插件去处理,对应了异步chunk的场景
  • string类型的entry或者object类型的entry,调用SingleEntryPlugin去处理,对应了单入口的场景

【问题】entry-option 事件是在什么时机被触发的呢?

如下代码所示,是在WebpackOptionsApply.js中,先调用处理入口的EntryOptionPlugin插件,然后触发 entry-option 事件,去调用不同类型的入口处理插件。

注意:调用插件的过程也就是一个注册事件以及回调函数的过程。

WebpackOptionApply.js

// 调用处理入口entry的插件
compiler.apply(new EntryOptionPlugin());
compiler.applyPluginsBailResult("entry-option", options.context, options.entry);

前面说到,make事件触发时,对应的回调逻辑都在不同配置入口的插件中注册的。下面以SingleEntryPlugin为例,说明从 make 事件被触发,到编译结束的整个过程。

SingleEntryPlugin.js

class SingleEntryPlugin {
 constructor(context, entry, name) {
 this.context = context;
 this.entry = entry;
 this.name = name;
 }
 apply(compiler) {
 // compilation 事件在初始化Compilation对象的时候被触发
 compiler.plugin("compilation", (compilation, params) => {
 const normalModuleFactory = params.normalModuleFactory;
 compilation.dependencyFactories.set(SingleEntryDependency, normalModuleFactory);
 });
 // make 事件在执行compile的时候被触发
 compiler.plugin("make", (compilation, callback) => {
 const dep = SingleEntryPlugin.createDependency(this.entry, this.name);
 // 编译的关键,调用Compilation中的addEntry,添加入口,进入编译过程。
 compilation.addEntry(this.context, dep, this.name, callback);
 });
 }
 static createDependency(entry, name) {
 const dep = new SingleEntryDependency(entry);
 dep.loc = name;
 return dep;
 }
}
module.exports = SingleEntryPlugin;

Compilation中负责具体编译的细节,包括如何创建模块以及模块的依赖,根据模板生成js等。如:addEntry,buildModule, processModuleDependencies等。

Compilation.js

addEntry(context, entry, name, callback) {
 const slot = {
 name: name,
 module: null
 };
 this.preparedChunks.push(slot);
 // 添加该chunk上的module依赖
 this._addModuleChain(context, entry, (module) => {
 entry.module = module;
 this.entries.push(module);
 module.issuer = null;
 }, (err, module) => {
 if(err) {
 return callback(err);
 }
 if(module) {
 slot.module = module;
 } else {
 const idx = this.preparedChunks.indexOf(slot);
 this.preparedChunks.splice(idx, 1);
 }
 return callback(null, module);
 });
}
_addModuleChain(context, dependency, onModule, callback) {
 const start = this.profile && Date.now();
 ...
 // 根据模块的类型获取对应的模块工厂并创建模块
 const moduleFactory = this.dependencyFactories.get(dependency.constructor);
 ...
 // 创建模块,将创建好的模块module作为参数传递给回调函数
 moduleFactory.create({
 contextInfo: {
 issuer: "",
 compiler: this.compiler.name
 },
 context: context,
 dependencies: [dependency]
 }, (err, module) => {
 if(err) {
 return errorAndCallback(new EntryModuleNotFoundError(err));
 }
 let afterFactory;
 if(this.profile) {
 if(!module.profile) {
 module.profile = {};
 }
 afterFactory = Date.now();
 module.profile.factory = afterFactory - start;
 }
 const result = this.addModule(module);
 if(!result) {
 module = this.getModule(module);
 onModule(module);
 if(this.profile) {
 const afterBuilding = Date.now();
 module.profile.building = afterBuilding - afterFactory;
 }
 return callback(null, module);
 }
 if(result instanceof Module) {
 if(this.profile) {
 result.profile = module.profile;
 }
 module = result;
 onModule(module);
 moduleReady.call(this);
 return;
 }
 onModule(module);
 // 构建模块,包括调用loader处理文件,使用acorn生成AST,遍历AST收集依赖
 this.buildModule(module, false, null, null, (err) => {
 if(err) {
 return errorAndCallback(err);
 }
 if(this.profile) {
 const afterBuilding = Date.now();
 module.profile.building = afterBuilding - afterFactory;
 }
  // 开始处理收集好的依赖
 moduleReady.call(this);
 });
 function moduleReady() {
 this.processModuleDependencies(module, err => {
 if(err) {
 return callback(err);
 }
 return callback(null, module);
 });
 }
 });
}

_addModuleChain 主要做了以下几件事情:

  • 调用对应的模块工厂类去创建module
  • buildModule,开始构建模块,收集依赖。构建过程中最耗时的一步,主要完成了调用loader处理模块以及模块之间的依赖,使用acorn生成AST的过程,遍历AST循环收集并构建依赖模块的过程。此处可以深入了解webpack使用loader处理模块的原理。

第四步:模块build完成后,使用seal进行module和chunk的一些处理,包括合并、拆分等。

Compilation的 seal 函数在 make 事件的回调函数中进行了调用。

seal(callback) {
 const self = this;
 // 触发seal事件,提供其他插件中seal的执行时机
 self.applyPlugins0("seal");
 self.nextFreeModuleIndex = 0;
 self.nextFreeModuleIndex2 = 0;
 self.preparedChunks.forEach(preparedChunk => {
 const module = preparedChunk.module;
 // 将module保存在chunk的origins中,origins保存了module的信息
 const chunk = self.addChunk(preparedChunk.name, module);
 // 创建一个entrypoint
 const entrypoint = self.entrypoints[chunk.name] = new Entrypoint(chunk.name);
 // 将chunk创建的chunk保存在entrypoint中,并将该entrypoint的实例保存在chunk的entrypoints中
 entrypoint.unshiftChunk(chunk);
 // 将module保存在chunk的_modules数组中
 chunk.addModule(module);
 // module实例上记录chunk的信息
 module.addChunk(chunk);
 // 定义该chunk的entryModule属性
 chunk.entryModule = module;
 self.assignIndex(module);
 self.assignDepth(module);
 self.processDependenciesBlockForChunk(module, chunk);
 });
 self.sortModules(self.modules);
 self.applyPlugins0("optimize");
 while(self.applyPluginsBailResult1("optimize-modules-basic", self.modules) ||
 self.applyPluginsBailResult1("optimize-modules", self.modules) ||
 self.applyPluginsBailResult1("optimize-modules-advanced", self.modules)) { /* empty */ }
 self.applyPlugins1("after-optimize-modules", self.modules);
 while(self.applyPluginsBailResult1("optimize-chunks-basic", self.chunks) ||
 self.applyPluginsBailResult1("optimize-chunks", self.chunks) ||
 self.applyPluginsBailResult1("optimize-chunks-advanced", self.chunks)) { /* empty */ }
 self.applyPlugins1("after-optimize-chunks", self.chunks);
 self.applyPluginsAsyncSeries("optimize-tree", self.chunks, self.modules, function sealPart2(err) {
 if(err) {
 return callback(err);
 }
 self.applyPlugins2("after-optimize-tree", self.chunks, self.modules);
 while(self.applyPluginsBailResult("optimize-chunk-modules-basic", self.chunks, self.modules) ||
 self.applyPluginsBailResult("optimize-chunk-modules", self.chunks, self.modules) ||
 self.applyPluginsBailResult("optimize-chunk-modules-advanced", self.chunks, self.modules)) { /* empty */ }
 self.applyPlugins2("after-optimize-chunk-modules", self.chunks, self.modules);
 const shouldRecord = self.applyPluginsBailResult("should-record") !== false;
 self.applyPlugins2("revive-modules", self.modules, self.records);
 self.applyPlugins1("optimize-module-order", self.modules);
 self.applyPlugins1("advanced-optimize-module-order", self.modules);
 self.applyPlugins1("before-module-ids", self.modules);
 self.applyPlugins1("module-ids", self.modules);
 self.applyModuleIds();
 self.applyPlugins1("optimize-module-ids", self.modules);
 self.applyPlugins1("after-optimize-module-ids", self.modules);
 self.sortItemsWithModuleIds();
 self.applyPlugins2("revive-chunks", self.chunks, self.records);
 self.applyPlugins1("optimize-chunk-order", self.chunks);
 self.applyPlugins1("before-chunk-ids", self.chunks);
 self.applyChunkIds();
 self.applyPlugins1("optimize-chunk-ids", self.chunks);
 self.applyPlugins1("after-optimize-chunk-ids", self.chunks);
 self.sortItemsWithChunkIds();
 if(shouldRecord)
 self.applyPlugins2("record-modules", self.modules, self.records);
 if(shouldRecord)
 self.applyPlugins2("record-chunks", self.chunks, self.records);
 self.applyPlugins0("before-hash");
 // 创建hash
 self.createHash();
 self.applyPlugins0("after-hash");
 if(shouldRecord)
 self.applyPlugins1("record-hash", self.records);
 self.applyPlugins0("before-module-assets");
 self.createModuleAssets();
 if(self.applyPluginsBailResult("should-generate-chunk-assets") !== false) {
 self.applyPlugins0("before-chunk-assets");
 // 使用template创建最后的js代码
 self.createChunkAssets();
 }
 self.applyPlugins1("additional-chunk-assets", self.chunks);
 self.summarizeDependencies();
 if(shouldRecord)
 self.applyPlugins2("record", self, self.records);
 self.applyPluginsAsync("additional-assets", err => {
 if(err) {
 return callback(err);
 }
 self.applyPluginsAsync("optimize-chunk-assets", self.chunks, err => {
 if(err) {
 return callback(err);
 }
 self.applyPlugins1("after-optimize-chunk-assets", self.chunks);
 self.applyPluginsAsync("optimize-assets", self.assets, err => {
 if(err) {
 return callback(err);
 }
 self.applyPlugins1("after-optimize-assets", self.assets);
 if(self.applyPluginsBailResult("need-additional-seal")) {
 self.unseal();
 return self.seal(callback);
 }
 return self.applyPluginsAsync("after-seal", callback);
 });
 });
 });
 });
}

在 seal 中可以发现,调用了很多不同的插件,主要就是操作chunk和module的一些插件,生成最后的源代码。其中 createHash 用来生成hash,createChunkAssets 用来生成chunk的源码,createModuleAssets 用来生成Module的源码。在 createChunkAssets 中判断了是否是入口chunk,入口的chunk用mainTemplate生成,否则用chunkTemplate生成。

第五步:通过 emitAssets 将生成的代码输入到output的指定位置

在compiler中的 run 方法中定义了compile的回调函数 onCompiled, 在编译结束后,会调用该回调函数。在该回调函数中调用了 emitAsset,触发了 emit 事件,将文件写入到文件系统中的指定位置。

总结

webpack的源码通过采用Tapable控制其事件流,并通过plugin机制,在webpack构建过程中将一些事件钩子暴露给plugin,使得开发者可以通过编写相应的插件来自定义打包。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

参考文章:

细说 webpack 之流程篇

webpack 源码解析

(0)

相关推荐

  • 详解如何提高 webpack 构建 Vue 项目的速度

    前言 最近有人给我的 Vue2 后台管理系统解决方案提了 issue ,说执行 npm run build 构建项目的时候极其慢,然后就引起我的注意了.在项目中,引入了比较多的第三方库,导致项目大,而每次修改,都不会去修改到这些库,构建却都要再打包这些库,浪费了不少时间.所以,把这些不常变动的第三方库都提取出来,下次 build 的时候不再构建这些库,这样既可大大缩短构建时间.那么要怎么去实现呢? 解决方案 DllPlugin 和 DllReferencePlugin 查找了一下资料,发现我们可

  • 详解Web使用webpack构建前端项目

    好久没写技术博客了, 原因在于最近在学习前端方面的技术, 熟悉我的同学都知道, 之前我有使用Vue搭建了一个个人简历, 体验了一把最新的前端技术, 但之前我们使用的是vue-cli脚手架工具, 对于如何自己实现前端构建工具, 当下最为流行的就是webpack和gulp了, 之前一篇我们讲了gulp, 这一篇我们来好好讨论webpack. 说起webpack, 想必做前端的同学肯定不会陌生, 其实之前我们使用gulp构建的时候, 也使用了webpack的打包技术, 其实gulp和webpack并不

  • webpack构建react多页面应用详解

    写这个的初衷是很难找一个简洁的项目脚手架,很多脚手架都有很多依赖,光看依赖就要很久,所以自己参照网上的内容,弄个这么一个简单的多页面的脚手架. 利用creat-react-app 新建一个react应用 npm install -g create-react-app 然后创建一个项目 create-react-app demo create-react-app会自动初始化一个脚手架并安装 React 项目的各种必要依赖,如果在过程中出现网络问题,请用cnpm淘宝镜像安装. 然后我们进入项目并启动

  • 详解使用webpack构建多页面应用

    关于webpack的配置和使用,网上已经有许多文章了,大多是在讲单页应用,当我们需要打包多个html时,事情就变得麻烦起来.怎么在webpack-dev-server里使用路由?怎么打包多个html和js chunk并自动更新md5?本文讲的就是如何解决这些问题. 这里假设你对Webpack已经有最基础的了解 需求 来看下我们的需求: 使用webpack-dev-server做开发时的服务器 在webpack-dev-server里使用路由,访问/a时候显示a.html,/b显示b.html 打

  • 详解用webpack2.0构建vue2.0超详细精简版

    npm init -y 初始化项目 安装各种依赖项 npm install --save vue 安装vue2.0 npm install --save-dev webpack@^2.1.0-beta.25 webpack-dev-server@^2.1.0-beta.9 安装webpack以及webpack测试服务器,默认安装是1.0版本的,所以必须指定版本号 npm install --save-dev babel-core babel-loader babel-preset-es2015

  • webpack构建vue项目的详细教程(配置篇)

    最近公司要求用vue重构项目,还涉及到模块化开发,于是乎,我专门花了几天的时间研究了一下webpack这个目前来看比较热门的模块加载兼打包工具,发现上手并不是很容易,现将总结的一些有关配置的心得分享出来,欢迎大神来拍砖... 一.新建一个项目目录,cd /d 定位进去,然后输入npm init,会提示你填写一些项目的信息,一直回车默认就好了,或者直接执行npm init -y 直接跳过,这样就在项目目录下生成了一个package.json文件. 二.接下来就是通过npm安装项目依赖项,命令行输入

  • 用Webpack构建Vue项目的实践

    最近在内部项目中做了一些基于 vue + webpack 的尝试,在小范围和同事们探讨之后,还是蛮多同学认可和喜欢的,所以通过本篇文章分享给更多人 开始之前,需要安装node环境.(安装过程在此就不啰嗦了) 1.创建基本结构首先我们要创建一个空文件夹(我这里叫todos,你可以随便命名)作为项目的根目录.创建一个没有任何依赖关系的package.json,可以通过命令行 npm init 创建. 配置下基本信息即可.创建一个index.html文件,这个是显示在浏览器中的页面. 注意:1.这里的

  • webpack构建换肤功能的思路详解

    最近项目中要实现一个换肤的功能,大体想了下,记录一下思路 要实现换肤功能,目标就是打包生成多份皮肤文件,需要哪个就用哪个 打包生成多份皮肤文件因为项目是使用webpack构建的,要想生成多份css文件,就要在入口中配置多个入口文件,每个入口文件会提取出一个css文件 config.entry={ app: ['./src/app.js'], defaultTheme: ['./src/theme.default.color.js'], orangeTheme:['./src/theme.oran

  • webpack构建的详细流程探底

    作为模块加载和打包神器,只需配置几个文件,加载各种 loader 就可以享受无痛流程化开发.但对于 webpack 这样一个复杂度较高的插件集合,它的整体流程及思想对我们来说还是很透明的. 本文旨在搞清楚从命令行下敲下 webpack 命令,或者配置 npm script 后执行 package.json 中的命令,到工程目录下出现打包的后的 bundle 文件的过程中,webpack都替我们做了哪些工作. 测试用webpack版本为 webpack@3.4.1 webpack.config.j

  • Ubuntu上使用Netdata设置实时性能监控的详细流程

    介绍 Netdata通过可扩展的Web仪表板提供准确的性能监控,可以显示Linux系统上的流程和服务.它监控有关CPU,内存,磁盘,网络,进程等的指标. Netdata一旦安装就不需要额外的配置,但提供了重要的定制.该应用程序的效率和速度旨在与本机控制台管理工具(如vmstat,iostat和htop)相媲美. 本教程中的步骤涵盖了使用其内置Web服务器或可选地使用Nginx成功设置运行Netdata的一台Ubuntu 16.04服务器所需的一切. 准备 要学习本教程,您需要: 一个Ubuntu

  • 性能优化篇之Webpack构建代码质量压缩的建议

    Webpack构建速度优化基本优化完毕,接下来考虑的就是:线上代码质量的优化,即如何使用webpack构建出高质量的代码 Webpack构建流程:初始化配置参数 -> 绑定事件钩子回调 -> 确定Entry逐一遍历 -> 使用loader编译文件 -> 输出文件 提纲 本次优化构建代码质量基本技术: reactRouter按需加载: 公共代码提取,以及代码压缩: CDN接入: 开启gzip压缩: 接入treeShaking,剔除无用代码 开启Scope Hoisting (生产环境

  • 浅谈webpack 构建性能优化策略小结

    背景 如今前端工程化的概念早已经深入人心,选择一款合适的编译和资源管理工具已经成为了所有前端工程中的标配,而在诸多的构建工具中,webpack以其丰富的功能和灵活的配置而深受业内吹捧,逐步取代了grunt和gulp成为大多数前端工程实践中的首选,React,Vue,Angular等诸多知名项目也都相继选用其作为官方构建工具,极受业内追捧.但是,随者工程开发的复杂程度和代码规模不断地增加,webpack暴露出来的各种性能问题也愈发明显,极大的影响着开发过程中的体验. 问题归纳 历经了多个web项目

  • 加速Webpack构建技巧总结

    Web 应用日益复杂,相关开发技术也百花齐放,这对前端构建工具提出了更高的要求. Webpack 从众多构建工具中脱颖而出成为目前最流行的构建工具,几乎成为目前前端开发里的必备工具之一. 大多数人在使用 Webpack 的过程中都会遇到构建速度慢的问题,在项目大时显得尤为突出,这极大的影响了我们的开发体验,降低了我们的开发效率. 本文将传授你一些加速 Webpack 构建的技巧,下面来一一介绍. 通过多进程并行处理 由于有大量文件需要解析和处理,构建是文件读写和计算密集型的操作,特别是当文件数量

  • Docker使用Git实现Jenkins发布、测试项目的详细流程

    一.安装Docker PS:安装前提是已经安装了CentOS VM 1.设置下载Docker的镜像源 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 2.安装Docker yum -y install docker-ce 3.启动Docker服务 systemctl start docker 4.配置镜像加速 4.1.修改docker服务配置:vim /us

  • Vue前端打包的详细流程

    目录 1.添加打包命令 2.运行打包代码 3.打包指定不同的环境变量 4.打包自定义文件 4.1 移除三方包 4.2 gzip压缩 5.打包发生错误: 1.添加打包命令 package.json中添加配置 npm run build 发布到线上的代码 不便于调试 命令: ①npm run build:dev 开发调式环境 ②npm run build:prod 线上调试环境 "build:dev": "vue-cli-service build --mode dev"

  • C++内存泄漏的检测与实现详细流程

    目录 内存泄漏 带来的问题 难点 hook实现泄漏判断与追踪(malloc和free重载) 宏定义实现hook 内存泄漏 malloc/new 调用在堆上分配的内存却没有相应的free/delete: 带来的问题 会逐渐吃掉虚拟内存 难点 如何判断是否内存泄漏 (最毛糙)可以使用+1和-1,即当调用分配内存变量+1,释放内存时候,变量-1,进程退出输出的count=0,进程内存没有泄漏,否则有泄漏: 线上版本,做一个配置文件,设置是否存在内存泄漏的一个标志位,平时肉眼观察不出的内存泄漏,在长时间

  • JavaScript TypeScript实现贪吃蛇游戏完整详细流程

    目录 项目背景及简介 多模块需求分析 场景模块需求 食物类模块需求 记分牌模块需求 蛇类模块需求 控制模块需求 项目搭建 ts转译为js代码 package.json包配置文件 webpack.config.js打包工具配置 项目结构搭建 html文件 css文件(这里使用的是less) 项目页面 多模块搭建 完成Food(食物)类 完成ScorePanel(记分牌)类 完成Snake(蛇)类 完成GameControl(控制)类 完成index类(启动项目) 项目启动 总结 项目背景及简介 t

随机推荐