用Python和WordCloud绘制词云的实现方法(内附让字体清晰的秘笈)

环境及模块:

  • Win7 64位
  • Python 3.6.4
  • WordCloud 1.5.0
  • Pillow 5.0.0
  • Jieba 0.39

目标:

绘制安徽省2018年某些科技项目的词云,直观展示热点。

思路:

先提取项目的名称,再用Jieba分词后提取词汇;过滤掉“研发”、“系列”等无意义的词;最后用WordCloud 绘制词云。

扩展:

词云默认是矩形的,本代码采用图片作为蒙版,产生异形词云图。这里用的图片是安徽省地图。

秘笈:

用网上的常规方法绘制的词云,字体有点模糊,秘笈在最后点明。

正式开始,Show you the code:

import numpy as np
from PIL import Image
import re
import jieba
from wordcloud import WordCloud,ImageColorGenerator,STOPWORDS
import matplotlib.pyplot as plt
# http://www.cnblogs.com/hatemath/
# 打开存放项目名称的txt文件
with open('content.txt','r',encoding='utf-8') as f:
  word= (f.read())
  f.close()

# 图片模板和字体
image=np.array(Image.open('ditu.jpg'))
font=r'C:\\Windows\\fonts\\msyh.ttf' 

# 去掉英文,保留中文
resultword=re.sub("[A-Za-z0-9\[\`\~\!\@\#\$\^\&\*\(\)\=\|\{\}\'\:\;\'\,\[\]\.\<\>\/\?\~\。\@\#\\\&\*\%]", "",word)
wordlist_after_jieba = jieba.cut(resultword)
wl_space_split = " ".join(wordlist_after_jieba) 

# 设置停用词
sw = set(STOPWORDS)
sw.add("研发")
sw.add("系列")
sw.add("这里不多写了,根据自己情况添加")

# 关键一步
my_wordcloud = WordCloud(scale=4,font_path=font,mask=image,stopwords=sw,background_color='white',
             max_words = 100,max_font_size = 60,random_state=20).generate(wl_space_split) 

#显示生成的词云
plt.imshow(my_wordcloud)
plt.axis("off")
plt.show() 

#保存生成的图片
my_wordcloud.to_file('result.jpg')

其中 ditu.jpg 为安徽省轮廓图片:

运行结果:

可以看到,智能设备、施工工法、系统平台、电缆、机器人等都是出现较多的词汇。

最后是秘笈揭晓时间:

为什么我这张图如此清晰?打开原图可以看到,这图的分辨率是1800*2500。你用网上的大多数代码,最后生成的图,尺寸很小,上面字迹边缘模糊。

关键在于调用WordCloud时的一个参数,回放一下代码:

# 关键一步
my_wordcloud = WordCloud(scale=4,font_path=font,mask=image,stopwords=sw,background_color='white',
max_words = 100,max_font_size = 60,random_state=20).generate(wl_space_split) 

第一个参数我写的是 scale=4,这个数值越大,产生的图片分辨率越高,字迹越清晰。你可以调到64试试,我希望你的电脑足够快 /笑哭

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 详解Python如何生成词云的方法

    前言 今天教大家用wrodcloud模块来生成词云,我读取了一篇小说并生成了词云,先看一下效果图: 效果图一: 效果图二: 根据效果图分析的还是比较准确的,小说中的主人公就是"程理",所以出现次数最多.图中有两种模式,一种是默认的模式,另一种是自己添加图片作为背景.下面我就带大家一起来学习怎样去生成词云! wordcloud的安装 对于新人来说安装wordcloud模块就是一大关,我们一般都是通过Pycharm或者PIP安装的,但是在安装wordcloud时会提示错误,如下: 我的解决

  • 使用python实现个性化词云的方法

    先上图片 词云图 需要模板 pip install jieba pip install wordcloud 还需要安装另外两个东西这两个我也不太懂借鉴百度写上去的 pip install scipy pip install matplotlib 因为用ubuntu系统所有没有windows那么麻烦,也没有那么多报错 看到好多人制作自己的词云有没有一丝丝的激动啊,有激动就要马上去做,冲动才是第一创造力. jieba是一款很恨很好用的中文分词模板 jeiba中文文档 至于wordcloud没有中文文

  • 利用Python爬取微博数据生成词云图片实例代码

    前言 在很早之前写过一篇怎么利用微博数据制作词云图片出来,之前的写得不完整,而且只能使用自己的数据,现在重新整理了一下,任何的微博数据都可以制作出来,一年一度的虐汪节,是继续蹲在角落默默吃狗粮还是主动出击告别单身汪加入散狗粮的行列就看你啦,七夕送什么才有心意,程序猿可以试试用一种特别的方式来表达你对女神的心意.有一个创意是把她过往发的微博整理后用词云展示出来.本文教你怎么用Python快速创建出有心意词云,即使是Python小白也能分分钟做出来.下面话不多说了,来一起看看详细的介绍吧. 准备工作

  • 用python结合jieba和wordcloud实现词云效果

    0x00 前言 突然想做一个漏洞词云,看看哪些漏洞比较高频,如果某些厂商有漏洞公开(比如ly),也好针对性挖掘.就选x云吧(镜像站 http://wy.hxsec.com/bugs.php ).用jieba和wordcloud两个强大的第三方库,就可以轻松打造出x云漏洞词云. github地址: https://github.com/theLSA/wooyun_wordcloud 本站下载地址:wooyun_wordcloud 0x01 爬取标题 直接上代码: #coding:utf-8 #Au

  • Python制作词云图代码实例

    词云图是将词汇按照频率的高低显示不同大小而形成的图,可以一目了然地看出关键词.下面是词云图的python代码- #导入需要模块 import jieba import numpy as np import matplotlib.pyplot as plt from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator text_road=str(input('请输入文章的路径:')) pi

  • python生成词云的实现方法(推荐)

    期末复习比较忙过段时间来专门写scrapy框架使用,今天介绍如何用python生成词云,虽然网上有很多词云生成工具,不过自己用python来写是不是更有成就感. 今天要生成的是励志歌曲的词云,百度文库里面找了20来首,如<倔强>,海阔天空是,什么的大家熟悉的. 所要用到的python库有 jieba(一个中文分词库).wordcould .matplotlib.PIL.numpy. 首先我们要做的是读取歌词.我将歌词存在了文件目录下励志歌曲文本中. 现在来读取他 #encoding=gbk l

  • python根据文本生成词云图代码实例

    这篇文章主要介绍了python根据文本生成词云图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 效果 代码 from wordcloud import WordCloud import codecs import jieba #import jieba.analyse as analyse from scipy.misc import imread import os from os import path import matplot

  • Python基于jieba库进行简单分词及词云功能实现方法

    本文实例讲述了Python基于jieba库进行简单分词及词云功能实现方法.分享给大家供大家参考,具体如下: 目标: 1.导入一个文本文件 2.使用jieba对文本进行分词 3.使用wordcloud包绘制词云 环境: Python 3.6.0 |Anaconda 4.3.1 (64-bit) 工具: jupyter notebook 从网上下载了一篇小说<老九门>,以下对这篇小说进行分词,并绘制词云图. 分词使用最流行的分词包jieba,参考:https://github.com/fxsjy/

  • 用Python和WordCloud绘制词云的实现方法(内附让字体清晰的秘笈)

    环境及模块: Win7 64位 Python 3.6.4 WordCloud 1.5.0 Pillow 5.0.0 Jieba 0.39 目标: 绘制安徽省2018年某些科技项目的词云,直观展示热点. 思路: 先提取项目的名称,再用Jieba分词后提取词汇:过滤掉"研发"."系列"等无意义的词:最后用WordCloud 绘制词云. 扩展: 词云默认是矩形的,本代码采用图片作为蒙版,产生异形词云图.这里用的图片是安徽省地图. 秘笈: 用网上的常规方法绘制的词云,字体有

  • python词云库wordcloud自定义词云制作步骤分享

    目录 wordcloud库常规方法 第三方库 读取文件 自定义绘制指定形状的词云 wordcloud库常规方法 import wordcloud c=wordcloud.WordCloud() #构建词云对象,配置对象参数 c.generate("wordcloud by python ") #加载词云文本 c.to_file("pywordcloud.png") #输出词云文件 词云生成步骤: 分隔:以空格分隔单词 统计:单词出现次数并过滤(1-2个字母会被滤掉)

  • 详解Python数据可视化编程 - 词云生成并保存(jieba+WordCloud)

    思维导图: 效果(语句版): 源码: # -*- coding: utf-8 -*- """ Created on Tue Mar 5 17:59:29 2019 @author: dell """ # ============================================================================= # 步骤: # 分割aaa = jieba.cut(str,cut_all=True/Fa

  • Python实现Wordcloud生成词云图的示例

    wordcloud是Python扩展库中一种将词语用图片表达出来的一种形式,通过词云生成的图片,我们可以更加直观的看出某篇文章的故事梗概. 首先贴出一张词云图(以哈利波特小说为例): 在生成词云图之前,首先要做一些准备工作 1.安装结巴分词库 pip install jieba Python中的分词模块有很多,他们的功能也都是大同小异,我们安装的结巴分词 是当前使用的最多的类型. 下面我来简单介绍一下结巴分词的用法 结巴分词的分词模式分为三种: (1)全模式:把句子中所有的可以成词的词语都扫描出

  • 使用Python轻松实现绘制词云图项目(附详细源码)

    目录 项目背景 项目实操 一.一般词云绘制 二.根据词频绘制词云 结 语 项目背景 虽然现在已经有很多现成的制作词云图的工具了,但一般存在以下几个问题: 问题一:工具太多,眼花缭乱,质量参差不齐,选择困难症: 问题二:大多词云工具或多或少有一些限制,自定义的空间有限: 问题三:有些工具甚至收费. 基于以上几个问题,觉得有必要写一篇Python绘制词云图的文章,因为实在太简单!没有任何编程基础的小白都能搞定的事,还找什么工具啊! OK,FINE.咱不废话,直接实操. 项目实操 一.一般词云绘制 制

  • Python基于matplotlib绘制栈式直方图的方法示例

    本文实例讲述了Python基于matplotlib绘制栈式直方图的方法.分享给大家供大家参考,具体如下: 平时我们只对一组数据做直方图统计,这样我们只要直接画直方图就可以了. 但有时候我们同时画多组数据的直方图(比如说我大一到大四跑大学城内环的用时的分布),大一到大四用不同颜色的直方图,显示在一张图上,这样会很直观. #!/usr/bin/env python # -*- coding: utf-8 -*- #http://www.jb51.net/article/100363.htm # nu

  • Python使用matplotlib绘制正弦和余弦曲线的方法示例

    本文实例讲述了Python使用matplotlib绘制正弦和余弦曲线的方法.分享给大家供大家参考,具体如下: 一 介绍 关键词:绘图库 官网:http://matplotlib.org 二 代码 import numpy as np import matplotlib.pyplot as plt #line x=np.linspace(-np.pi,np.pi,256,endpoint=True) #定义余弦函数正弦函数 c,s=np.cos(x),np.sin(x) plt.figure(1)

  • Python 使用folium绘制leaflet地图的实现方法

    leaflet为R语言提供了API很好用,这次尝试用Python使用leaflet,需要folium 安装folium pip install folium 一个小例子 import folium import re input = open('C:\\Users\\Administrator\\Desktop\\a.txt','r') text=input.read() list = re.split('\n',text) location = [] for element in list:

随机推荐