tensorflow实现简单的卷积神经网络

本文实例为大家分享了Android九宫格图片展示的具体代码,供大家参考,具体内容如下

一.知识点总结

1.  卷积神经网络出现的初衷是降低对图像的预处理,避免建立复杂的特征工程。因为卷积神经网络在训练的过程中,自己会提取特征。

2.   灵感来自于猫的视觉皮层研究,每一个视觉神经元只会处理一小块区域的视觉图像,即感知野。放到卷积神经网络里就是每一个隐含节点只与设定范围内的像素点相连(设定范围就是卷积核的尺寸),而全连接层是每个像素点与每个隐含节点相连。这种感知野也称之为局部感知。

例如,一张1000*1000的图片,如果隐含层有100*100个隐含节点全连接,则需要1000*1000*100*100+100*100个参数,而如果有10*10的范围局部感知,用同样多的隐含节点,只需要10*10*100*100+100*100个参数。

3.  把卷积的过程称作卷积滤波,除了上面的局部感知,卷积滤波还有一个化简操作——权值共享。即一个卷积滤波中的所有隐含节点与感知图像连接的权值是一样的,这样,上述例子的参数减少为10*10+100*100个了。W的数量等于感知范围的尺寸。

4.  为了抗变形和减小复杂度,卷积层同时还要做激活和池化。激活函数前一章已经弄明白了,池化,相当于降采样,将n*n的像素区域采样为m*m区域,m通常小于n。通常选择最大池化,即选择区域内的最大像素点。

5.  总结来讲,卷积有三个要点:局部连接、权值共享、池化降采样。一个卷积过程包含三个步骤:卷积滤波、激活、池化。

6.  卷积滤波中的卷积范围可以用一个词来代替——卷积核,卷积核等同于卷积滤波中的一个隐含节点感知范围。由于权值共享,相当于一个卷积核对整个图像做多次小范围滤波,每滤一次波生成一个小的特征图像,多次滤波后将所有小特征图像组合起来,生成了对整个图像的feature map。通常,一个卷积滤波过程有多个卷积核卷积,生成多张feature map。

所有的feature map都会被池化,然后输入下一层。

7.  需要训练的权值(参数)的数量只和卷积核尺寸有关,隐含节点(即卷积核要卷积的次数)只和卷积的卷积步长、图像尺寸有关。

个人理解,一个卷积核对整个图像卷积的过程,就像是一个棋子,在整个棋盘上按照步长跳动,每跳动一次,对感知范围内的像素点做一次连接计算。

8.  CNN在结构上和图像的结构更为接近,都是2D的,因此,早期用在图像上效果很好,但是最近,CNN用于NLP也很热门。

二.程序解析

# coding: utf-8 

# In[1]: 

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNSIT_data/", one_hot=True)
sess = tf.InteractiveSession() 

# In[2]:
#由于W和b在各层中均要用到,先定义乘函数。
#tf.truncated_normal:截断正态分布,即限制范围的正态分布
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial) 

# In[7]:
#bias初始化值0.1.
def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial) 

# In[12]:
#tf.nn.conv2d:二维的卷积
#conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,data_format=None, name=None)
#filter:A 4-D tensor of shape
#   `[filter_height, filter_width, in_channels, out_channels]`
#strides:步长,都是1表示所有点都不会被遗漏。1-D 4值,表示每歌dim的移动步长。
# padding:边界的处理方式,“SAME"、"VALID”可选
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 

#tf.nn.max_pool:最大值池化函数,即求2*2区域的最大值,保留最显著的特征。
#max_pool(value, ksize, strides, padding, data_format="NHWC", name=None)
#ksize:池化窗口的尺寸
#strides:[1,2,2,1]表示横竖方向步长为2
def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides = [1, 2, 2, 1], padding='SAME') 

x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
#tf.reshape:tensor的变形函数。
#-1:样本数量不固定
#28,28:新形状的shape
#1:颜色通道数
x_image = tf.reshape(x, [-1, 28, 28, 1]) 

#卷积层包含三部分:卷积计算、激活、池化
#[5,5,1,32]表示卷积核的尺寸为5×5, 颜色通道为1, 有32个卷积核
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) 

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) 

#经过2次2×2的池化后,图像的尺寸变为7×7,第二个卷积层有64个卷积核,生成64类特征,因此,卷积最后输出为7×7×64.
#tensor进入全连接层之前,先将64张二维图像变形为1维图像,便于计算。
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 

#对全连接层做dropot
keep_prob = tf.placeholder(tf.float32)
h_fc1_dropout = tf.nn.dropout(h_fc1, keep_prob) 

#又一个全连接后foftmax分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_dropout, W_fc2) + b_fc2) 

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv), reduction_indices=[1]))
#AdamOptimizer:Adam优化函数
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 

correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

#训练,并且每100个batch计算一次精度
tf.global_variables_initializer().run()
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0})
    print("step %d, training accuracy %g" %(i, train_accuracy))
  train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5}) 

#在测试集上测试
print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0})) 

补充一下目前三个网络在mnist上的精度分别为:

无隐含层的softmax:91.5%

加入一个全连接隐含层的感知机:98.1%

此cnn:99.07%

和作者的训练结果有细微的差异,可能设备不同吧。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 解决Tensorflow安装成功,但在导入时报错的问题

    在Mac上按照官网教程安装成功tensor flow后,但在程序中导入时,仍然报错,包括但不限于以下两个错误.对于这种错误,原因主要在于Mac内默认的python库比较老了,即便通过pip命令安装了新的包,python也会默认导入默认位置的包.这时候需要做的就是删除,有冲突的包,对于以下两个错误,就是分别时numpy和six两个包冲突了. 可以在python命令行环境下,通过numpy.version和six.version两个命令查看当前版本,如果与预期的不一致,就可以删掉. 可以通过nump

  • Tensorflow卷积神经网络实例进阶

    在Tensorflow卷积神经网络实例这篇博客中,我们实现了一个简单的卷积神经网络,没有复杂的Trick.接下来,我们将使用CIFAR-10数据集进行训练. CIFAR-10是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张.CIFAR-10如同其名字,一共标注为10类,每一类图片6000张. 本文实现了进阶的卷积神经网络来解决CIFAR-10分类问题,我们使用了一些新的技巧: 对weights进行了L2的正则化 对图片进行了翻转.随机剪切等数据

  • 基于MTCNN/TensorFlow实现人脸检测

    人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等.对于opencv的人脸检测方法,有点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测.因此,该方法不适合现场应用.对于dlib人脸检测方法 ,效果好于opencv的方法,但是检测力度也难以达到现场应用标准. MTCNN是基于深度学习的人脸检测方法,对自然环境中光线,角度和人脸表情变化更具有鲁棒性,人脸检测效果更好:同时,内存消

  • 完美解决安装完tensorflow后pip无法使用的问题

    Win8,ANACONDA3(64-bit),Python3.6.2.ANACONDA Prompt中不能用pip命令安装包,并且是在安装了TensorFlow后才发生的. 报错如下: F:\360Downloads>pip install --upgrade pip Exception: Traceback (most recent call last): File "E:\tools\anaconda\py3\lib\site-packages\pip\basecommand.py&q

  • tensorflow实现简单的卷积网络

    使用tensorflow实现一个简单的卷积神经,使用的数据集是MNIST,本节将使用两个卷积层加一个全连接层,构建一个简单有代表性的卷积网络. 代码是按照书上的敲的,第一步就是导入数据库,设置节点的初始值,Tf.nn.conv2d是tensorflow中的2维卷积,参数x是输入,W是卷积的参数,比如[5,5,1,32],前面两个数字代表卷积核的尺寸,第三个数字代表有几个通道,比如灰度图是1,彩色图是3.最后一个代表卷积的数量,总的实现代码如下: from tensorflow.examples.

  • Tensorflow实现卷积神经网络的详细代码

    本文实例为大家分享了Tensorflow实现卷积神经网络的具体代码,供大家参考,具体内容如下 1.概述 定义: 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.它包括卷积层(alternating convolutional layer)和池层(pooling layer). 卷积层(convolutional layer): 对输入数据应用若干过滤器,一个输入参数被

  • Python(TensorFlow框架)实现手写数字识别系统的方法

    手写数字识别算法的设计与实现 本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统.这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题.本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述. 项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统. 设计识别率高的算法,实现快速识别的系统. 1 LeNet-5模型的介绍 本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示

  • Tensorflow实现AlexNet卷积神经网络及运算时间评测

    本文实例为大家分享了Tensorflow实现AlexNet卷积神经网络的具体实现代码,供大家参考,具体内容如下 之前已经介绍过了AlexNet的网络构建了,这次主要不是为了训练数据,而是为了对每个batch的前馈(Forward)和反馈(backward)的平均耗时进行计算.在设计网络的过程中,分类的结果很重要,但是运算速率也相当重要.尤其是在跟踪(Tracking)的任务中,如果使用的网络太深,那么也会导致实时性不好. from datetime import datetime import

  • tensorflow实现简单的卷积神经网络

    本文实例为大家分享了Android九宫格图片展示的具体代码,供大家参考,具体内容如下 一.知识点总结 1.  卷积神经网络出现的初衷是降低对图像的预处理,避免建立复杂的特征工程.因为卷积神经网络在训练的过程中,自己会提取特征. 2.   灵感来自于猫的视觉皮层研究,每一个视觉神经元只会处理一小块区域的视觉图像,即感知野.放到卷积神经网络里就是每一个隐含节点只与设定范围内的像素点相连(设定范围就是卷积核的尺寸),而全连接层是每个像素点与每个隐含节点相连.这种感知野也称之为局部感知. 例如,一张10

  • TensorFlow深度学习之卷积神经网络CNN

    一.卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此

  • TensorFlow 实战之实现卷积神经网络的实例讲解

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeural Network,CNN) 19世纪60年代科学家最早提出感受野(ReceptiveField).当时通过对猫视觉皮层细胞研究,科学家发现每一个视觉神经元只会处理一小块区域的视觉图像,即感受野.20世纪80年代,日本科学家提出神经认知机(Neocognitron)的概念,被视为卷积神经网络最初

  • Tensorflow实现卷积神经网络用于人脸关键点识别

    今年来人工智能的概念越来越火,AlphaGo以4:1击败李世石更是起到推波助澜的作用.作为一个开挖掘机的菜鸟,深深感到不学习一下deep learning早晚要被淘汰. 既然要开始学,当然是搭一个深度神经网络跑几个数据集感受一下作为入门最直观了.自己写代码实现的话debug的过程和运行效率都会很忧伤,我也不知道怎么调用GPU- 所以还是站在巨人的肩膀上,用现成的框架吧.粗略了解一下,现在比较知名的有caffe.mxnet.tensorflow等等.选哪个呢?对我来说选择的标准就两个,第一要容易安

  • TensorFlow实现卷积神经网络CNN

    一.卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因

  • Tensorflow卷积神经网络实例

    CNN最大的特点在于卷积的权值共享结构,可以大幅减少神经网络的参数量,防止过拟合的同时又降低了神经网络模型的复杂度.在CNN中,第一个卷积层会直接接受图像像素级的输入,每一个卷积操作只处理一小块图像,进行卷积变化后再传到后面的网络,每一层卷积都会提取数据中最有效的特征.这种方法可以提取到图像中最基础的特征,比如不同方向的边或者拐角,而后再进行组合和抽象形成更高阶的特征. 一般的卷积神经网络由多个卷积层构成,每个卷积层中通常会进行如下几个操作: 图像通过多个不同的卷积核的滤波,并加偏置(bias)

  • TensorFlow卷积神经网络MNIST数据集实现示例

    这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集.网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连接层1–全连接层2(输出层),这是一个简单但非常有代表性的卷积神经网络. import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print("MNIST ready&q

  • tensorflow学习笔记之mnist的卷积神经网络实例

    mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru

随机推荐