javascript解决小数的加减乘除精度丢失的方案

原因:js按照2进制来处理小数的加减乘除,在arg1的基础上 将arg2的精度进行扩展或逆扩展匹配,所以会出现如下情况.

javascript(js)的小数点加减乘除问题,是一个js的bug如0.3*1 = 0.2999999999等,下面列出可以完美求出相应精度的四种js算法

function accDiv(arg1,arg2){
 var t1=0,t2=0,r1,r2;
 try{t1=arg1.toString().split(".")[1].length}catch(e){}
 try{t2=arg2.toString().split(".")[1].length}catch(e){}
 with(Math){
 r1=Number(arg1.toString().replace(".",""))
 r2=Number(arg2.toString().replace(".",""))
 return accMul((r1/r2),pow(10,t2-t1));
 }
 }
 //乘法
 function accMul(arg1,arg2)
 {
 var m=0,s1=arg1.toString(),s2=arg2.toString();
 try{m+=s1.split(".")[1].length}catch(e){}
 try{m+=s2.split(".")[1].length}catch(e){}
 return Number(s1.replace(".",""))*Number(s2.replace(".",""))/Math.pow(10,m)
 }
//加法
function accAdd(arg1,arg2){
var r1,r2,m;
try{r1=arg1.toString().split(".")[1].length}catch(e){r1=0}
try{r2=arg2.toString().split(".")[1].length}catch(e){r2=0}
m=Math.pow(10,Math.max(r1,r2))
return (arg1*m+arg2*m)/m
}
//减法
function Subtr(arg1,arg2){
 var r1,r2,m,n;
 try{r1=arg1.toString().split(".")[1].length}catch(e){r1=0}
 try{r2=arg2.toString().split(".")[1].length}catch(e){r2=0}
 m=Math.pow(10,Math.max(r1,r2));
 n=(r1>=r2)?r1:r2;
 return ((arg1*m-arg2*m)/m).toFixed(n);
} 

下面我们来具体分析洗在JavaScript中关于数字精度的丢失问题

一、JS数字精度丢失的一些典型问题

1. 两个简单的浮点数相加

0.1 + 0.2 != 0.3 // true

Firebug

这真不是 Firebug 的问题,可以用alert试试 (哈哈开玩笑)。

看看Java的运算结果

再看看Python

2. 大整数运算

9999999999999999 == 10000000000000001 // ?

Firebug

16位和17位数竟然相等,没天理啊。

又如

var x = 9007199254740992
x + 1 == x // ?

看结果

三观又被颠覆了。

3. toFixed 不会四舍五入(Chrome)

1.335.toFixed(2) // 1.33

Firebug

线上曾经发生过 Chrome 中价格和其它浏览器不一致,正是因为 toFixed 兼容性问题导致

二、JS 数字丢失精度的原因

计算机的二进制实现和位数限制有些数无法有限表示。就像一些无理数不能有限表示,如 圆周率 3.1415926...,1.3333... 等。JS 遵循 IEEE 754 规范,采用双精度存储(double precision),占用 64 bit。如图

意义

  1. 1位用来表示符号位
  2. 11位用来表示指数
  3. 52位表示尾数

浮点数,比如

0.1 >> 0.0001 1001 1001 1001…(1001无限循环)
0.2 >> 0.0011 0011 0011 0011…(0011无限循环)

此时只能模仿十进制进行四舍五入了,但是二进制只有 0 和 1 两个,于是变为 0 舍 1 入。这即是计算机中部分浮点数运算时出现误差,丢失精度的根本原因。

大整数的精度丢失和浮点数本质上是一样的,尾数位最大是 52 位,因此 JS 中能精准表示的最大整数是 Math.pow(2, 53),十进制即 9007199254740992。

大于 9007199254740992 的可能会丢失精度

9007199254740992   >> 10000000000000...000 // 共计 53 个 0
9007199254740992 + 1 >> 10000000000000...001 // 中间 52 个 0
9007199254740992 + 2 >> 10000000000000...010 // 中间 51 个 0

实际上

9007199254740992 + 1 // 丢失
9007199254740992 + 2 // 未丢失
9007199254740992 + 3 // 丢失
9007199254740992 + 4 // 未丢失

结果如图

以上,可以知道看似有穷的数字, 在计算机的二进制表示里却是无穷的,由于存储位数限制因此存在“舍去”,精度丢失就发生了。

想了解更深入的分析可以看这篇论文(又长又臭):What Every Computer Scientist Should Know About Floating-Point Arithmetic

三、解决方案

对于整数,前端出现问题的几率可能比较低,毕竟很少有业务需要需要用到超大整数,只要运算结果不超过 Math.pow(2, 53) 就不会丢失精度。

对于小数,前端出现问题的几率还是很多的,尤其在一些电商网站涉及到金额等数据。解决方式:把小数放到位整数(乘倍数),再缩小回原来倍数(除倍数)

// 0.1 + 0.2
(0.1*10 + 0.2*10) / 10 == 0.3 // true

以下是我写了一个对象,对小数的加减乘除运算丢失精度做了屏蔽。当然转换后的整数依然不能超过 9007199254740992。

/**
 * floatObj 包含加减乘除四个方法,能确保浮点数运算不丢失精度
 *
 * 我们知道计算机编程语言里浮点数计算会存在精度丢失问题(或称舍入误差),其根本原因是二进制和实现位数限制有些数无法有限表示
 * 以下是十进制小数对应的二进制表示
 *      0.1 >> 0.0001 1001 1001 1001…(1001无限循环)
 *      0.2 >> 0.0011 0011 0011 0011…(0011无限循环)
 * 计算机里每种数据类型的存储是一个有限宽度,比如 JavaScript 使用 64 位存储数字类型,因此超出的会舍去。舍去的部分就是精度丢失的部分。
 *
 * ** method **
 *  add / subtract / multiply /divide
 *
 * ** explame **
 *  0.1 + 0.2 == 0.30000000000000004 (多了 0.00000000000004)
 *  0.2 + 0.4 == 0.6000000000000001  (多了 0.0000000000001)
 *  19.9 * 100 == 1989.9999999999998 (少了 0.0000000000002)
 *
 * floatObj.add(0.1, 0.2) >> 0.3
 * floatObj.multiply(19.9, 100) >> 1990
 *
 */
var floatObj = function() {
    
    /*
     * 判断obj是否为一个整数
     */
    function isInteger(obj) {
        return Math.floor(obj) === obj
    }
    
    /*
     * 将一个浮点数转成整数,返回整数和倍数。如 3.14 >> 314,倍数是 100
     * @param floatNum {number} 小数
     * @return {object}
     *   {times:100, num: 314}
     */
    function toInteger(floatNum) {
        var ret = {times: 1, num: 0}
        if (isInteger(floatNum)) {
            ret.num = floatNum
            return ret
        }
        var strfi  = floatNum + ''
        var dotPos = strfi.indexOf('.')
        var len    = strfi.substr(dotPos+1).length
        var times  = Math.pow(10, len)
        var intNum = parseInt(floatNum * times + 0.5, 10)
        ret.times  = times
        ret.num    = intNum
        return ret
    }
    
    /*
     * 核心方法,实现加减乘除运算,确保不丢失精度
     * 思路:把小数放大为整数(乘),进行算术运算,再缩小为小数(除)
     *
     * @param a {number} 运算数1
     * @param b {number} 运算数2
     * @param digits {number} 精度,保留的小数点数,比如 2, 即保留为两位小数
     * @param op {string} 运算类型,有加减乘除(add/subtract/multiply/divide)
     *
     */
    function operation(a, b, digits, op) {
        var o1 = toInteger(a)
        var o2 = toInteger(b)
        var n1 = o1.num
        var n2 = o2.num
        var t1 = o1.times
        var t2 = o2.times
        var max = t1 > t2 ? t1 : t2
        var result = null
        switch (op) {
            case 'add':
                if (t1 === t2) { // 两个小数位数相同
                    result = n1 + n2
                } else if (t1 > t2) { // o1 小数位 大于 o2
                    result = n1 + n2 * (t1 / t2)
                } else { // o1 小数位 小于 o2
                    result = n1 * (t2 / t1) + n2
                }
                return result / max
            case 'subtract':
                if (t1 === t2) {
                    result = n1 - n2
                } else if (t1 > t2) {
                    result = n1 - n2 * (t1 / t2)
                } else {
                    result = n1 * (t2 / t1) - n2
                }
                return result / max
            case 'multiply':
                result = (n1 * n2) / (t1 * t2)
                return result
            case 'divide':
                result = (n1 / n2) * (t2 / t1)
                return result
        }
    }
    
    // 加减乘除的四个接口
    function add(a, b, digits) {
        return operation(a, b, digits, 'add')
    }
    function subtract(a, b, digits) {
        return operation(a, b, digits, 'subtract')
    }
    function multiply(a, b, digits) {
        return operation(a, b, digits, 'multiply')
    }
    function divide(a, b, digits) {
        return operation(a, b, digits, 'divide')
    }
    
    // exports
    return {
        add: add,
        subtract: subtract,
        multiply: multiply,
        divide: divide
    }
}();

toFixed的修复如下

// toFixed 修复
function toFixed(num, s) {
    var times = Math.pow(10, s)
    var des = num * times + 0.5
    des = parseInt(des, 10) / times
    return des + ''
}
(0)

相关推荐

  • javascript加减乘除的简单实例

    javascript加减乘除的简单实例 <html> <head> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> </head> <script language="javascript" type="text/javascript"> //除法函数 function accD

  • js加减乘除丢失精度问题解决方法

    在javascript中,当你使用小数进行加减乘除运算时,你会发现,所得到的结果有时后面带有长长的一段小数,使运算变得复杂,并且影响计算结果.上网查询了一下原因,大致如下:在javascript中,带小数的数据运算时总会出现好多位小数.这是因为在javascript中浮点数的计算是以2进制计算的. 复制代码 代码如下: /** * 加法运算,避免数据相加小数点后产生多位数和计算精度损失. * * @param num1加数1 | num2加数2 */ function numAdd(num1,

  • javascript解决小数的加减乘除精度丢失的方案

    原因:js按照2进制来处理小数的加减乘除,在arg1的基础上 将arg2的精度进行扩展或逆扩展匹配,所以会出现如下情况. javascript(js)的小数点加减乘除问题,是一个js的bug如0.3*1 = 0.2999999999等,下面列出可以完美求出相应精度的四种js算法 function accDiv(arg1,arg2){ var t1=0,t2=0,r1,r2; try{t1=arg1.toString().split(".")[1].length}catch(e){} t

  • 解决JavaScript数字精度丢失问题的方法

    本文分为三个部分 JS 数字精度丢失的一些典型问题 JS 数字精度丢失的原因 解决方案(一个对象+一个函数) 一.JS数字精度丢失的一些典型问题 1. 两个简单的浮点数相加 0.1 + 0.2 != 0.3 // true 这真不是 Firebug 的问题,可以用alert试试 (哈哈开玩笑). 看看Java的运算结果 再看看Python 2. 大整数运算 16位和17位数竟然相等,没天理啊. 又如 var x = 9007199254740992 x + 1 == x // ? 看结果 三观又

  • Java用BigDecimal类解决Double类型精度丢失的问题

    本篇要点 简单描述浮点数十进制转二进制精度丢失的原因. 介绍几种创建BigDecimal方式的区别. 整理了高精度计算的工具类. 学习了阿里巴巴Java开发手册关于BigDecimal比较相等的规定. 经典问题:浮点数精度丢失 精度丢失的问题是在其他计算机语言中也都会出现,float和double类型的数据在执行二进制浮点运算的时候,并没有提供完全精确的结果.产生误差不在于数的大小,而是因为数的精度. 关于浮点数存储精度丢失的问题,话题过于庞大,感兴趣的同学可以自行搜索一下:[解惑]剖析floa

  • 一文教会你解决js数字精度丢失问题

    目录 一.关于为什么要解决精度丢失 二.怎么解决js的计算精度丢失问题? 三.toPrecision 特定方法返回四舍五入长度字符串 结语 一.关于为什么要解决精度丢失 可以看下例子,因为js失去精度问题也是常见的问题,正常我们可以四舍五入或者 toFixed保留小数这种去解决 现在遇到问题是我们明知道计算结果是等于0.01的但是最后的结果确实true,如果我们遇到运算问题,小数数值比对问题,那么我们就必须要去解决他,否则也就会出现上者情况,出现逻辑判断出错问题 二.怎么解决js的计算精度丢失问

  • javascript小数精度丢失的完美解决方法

    原因:js按照2进制来处理小数的加减乘除,在arg1的基础上 将arg2的精度进行扩展或逆扩展匹配,所以会出现如下情况. javascript(js)的小数点加减乘除问题,是一个js的bug如0.3*1 = 0.2999999999等,下面列出可以完美求出相应精度的四种js算法 function accDiv(arg1,arg2){ var t1=0,t2=0,r1,r2; try{t1=arg1.toString().split(".")[1].length}catch(e){} t

  • 利用Math.js解决JS计算小数精度丢失问题

    目录 缘由 问题的原因 最通俗的解释 解决方案 - Math.js 安装 封装 使用 附:math.js 大数功能 总结 缘由 最近在做公司的一个点餐H5项目需要前端动态计算用户选的商品的总价(单价*数量)和购物车的总价格时发现关于 JavaScript 浮点数计算精度不准确问题.在控制台输入0.1+0.2也能发现此问题. // 加法 0.1 + 0.2 = 0.30000000000000004 0.7 + 0.1 = 0.7999999999999999 0.2 + 0.4 = 0.6000

  • 浅谈JavaScript中小数和大整数的精度丢失

    先来看两个问题: 0.1 + 0.2 == 0.3; // false 9999999999999999 == 10000000000000000; // true 第一个问题是小数的精度问题,在业界不少博客里已有讨论.第二个问题,去年公司有个系统的数据库在做数据订正时,发现有部分数据重复的诡异现象.本文将从规范出发,对上面的问题做个小结. 最大整数 JavaScript 中的数字是用 IEEE 754 双精度 64 位浮点数 来存储的,其格式为: s x m x 2^e s 是符号位,表示正负

  • 解决java数值范围以及float与double精度丢失的问题

    1.java中int,float,long,double取值范围 public class TestOutOfBound { public static void main(String[] args) { System.out.println(Integer.MAX_VALUE-(-Integer.MAX_VALUE)); //内存溢出 System.out.println(Integer.MAX_VALUE); //2的31次方-1,10个数位,正的20亿左右,用在钱上面不一定够 Syste

  • SpringBoot解决BigDecimal传到前端后精度丢失问题

    目录 简介 问题描述 实例 问题复现 Java后端BigDecimal的范围 解决方案 方案1:全局处理 方案2:局部处理 简介 本文用示例介绍SpringBoot如何解决BigDecimal传到前端后精度丢失问题. 问题描述 实例 Controller package com.knife.controller; import com.knife.entity.UserVO; import org.springframework.web.bind.annotation.GetMapping; i

  • gson ajax 数字精度丢失问题的解决方法

    ajax传输的json,gson会发生丢失,long > 15的时候会丢失0 解决方案:直接把属性为long的属性自动加上双引号成为js的字符串,这样就不会发生丢失了,ajax自动识别为字符串. 用法: ajaxResult("",0,new Object()); //随便一个对象就可以,List 之类的 /** * 以Ajax方式输出常规操作结果 * * @param status * 返回状态,200表示成功, 500表示错误 * @param message * 操作结果描

随机推荐