Python 处理文件的几种方式

在这个世界上,人们每天都在用 Python 完成着不同的工作。而文件操作,则是大家最常需要解决的任务之一。使用 Python,你可以轻松为他人生成精美的报表,也可以用短短几行代码快速解析、整理上万份数据文件。

当我们编写与文件相关的代码时,通常会关注这些事情:我的代码是不是足够快?我的代码有没有事半功倍的完成任务? 在这篇文章中,我会与你分享与之相关的几个编程建议。我会向你推荐一个被低估的 Python 标准库模块、演示一个读取大文件的最佳方式、最后再分享我对函数设计的一点思考。

下面,让我们进入第一个“模块安利”时间吧。

注意:因为不同操作系统的文件系统大不相同,本文的主要编写环境为 Mac OS/Linux 系统,其中一些代码可能并不适用于 Windows 系统。

建议一:使用 pathlib 模块

如果你需要在 Python 里进行文件处理,那么标准库中的 os 和 os.path 兄弟俩一定是你无法避开的两个模块。在这两个模块里,有着非常多与文件路径处理、文件读写、文件状态查看相关的工具函数。

让我用一个例子来展示一下它们的使用场景。有一个目录里装了很多数据文件,但是它们的后缀名并不统一,既有 .txt,又有 .csv。我们需要把其中以 .txt 结尾的文件都修改为 .csv 后缀名。

我们可以写出这样一个函数:

  import os

  import os.path

  def unify_ext_with_os_path(path):

    """统一目录下的 .txt 文件名后缀为 .csv

    """

    for filename in os.listdir(path):

      basename, ext = os.path.splitext(filename)

      if ext == '.txt':

        abs_filepath = os.path.join(path, filename)

        os.rename(abs_filepath, os.path.join(path, f'{basename}.csv'))

让我们看看,上面的代码一共用到了哪些与文件处理相关的函数:

  • os.listdir(path):列出 path 目录下的所有文件(含文件夹)
  • os.path.splitext(filename):切分文件名里面的基础名称和后缀部分
  • os.path.join(path,filename):组合需要操作的文件名为绝对路径
  • os.rename(...):重命名某个文件

上面的函数虽然可以完成需求,但说句实话,即使在写了很多年 Python 代码后,我依然觉得:这些函数不光很难记,而且最终的成品代码也不怎么讨人喜欢。

使用 pathlib 模块改写代码

为了让文件处理变得更简单,Python 在 3.4 版本引入了一个新的标准库模块:pathlib。它基于面向对象思想设计,封装了非常多与文件操作相关的功能。如果使用它来改写上面的代码,结果会大不相同。

使用 pathlib 模块后的代码:

  from pathlib import Path

  def unify_ext_with_pathlib(path):

    for fpath in Path(path).glob('*.txt'):

      fpath.rename(fpath.with_suffix('.csv'))

和旧代码相比,新函数只需要两行代码就完成了工作。而这两行代码主要做了这么几件事:

  1. 首先使用 Path(path) 将字符串路径转换为 Path 对象
  2. 调用 .glob('*.txt') 对路径下所有内容进行模式匹配并以生成器方式返回,结果仍然是 Path 对象,所以我们可以接着做后面的操作
  3. 使用 .with_suffix('.csv') 直接获取使用新后缀名的文件全路径
  4. 调用 .rename(target) 完成重命名

相比 os 和 os.path,引入 pathlib 模块后的代码明显更精简,也更有整体统一感。所有文件相关的操作都是一站式完成。

其他用法

除此之外,pathlib 模块还提供了很多有趣的用法。比如使用 / 运算符来组合文件路径:

  # 旧朋友:使用 os.path 模块

  >>> import os.path

  >>> os.path.join('/tmp', 'foo.txt')

  '/tmp/foo.txt'

  # ✨ 新潮流:使用 / 运算符

  >>> from pathlib import Path

  >>> Path('/tmp') / 'foo.txt'

  PosixPath('/tmp/foo.txt')

或者使用 .read_text() 来快速读取文件内容:

  # 标准做法,使用 with open(...) 打开文件

  >>> with open('foo.txt') as file:

  ...   print(file.read())

  ...

  foo

  # 使用 pathlib 可以让这件事情变得更简单

  >>> from pathlib import Path

  >>> print(Path('foo.txt').read_text())

  foo

除了我在文章里介绍的这些,pathlib 模块还提供了非常多有用的方法,强烈建议去 官方文档 详细了解一下。

如果上面这些都不足以让你动心,那么我再多给你一个使用 pathlib 的理由:PEP-519 里定义了一个专门用于“文件路径”的新对象协议,这意味着从该 PEP 生效后的 Python 3.6 版本起,pathlib 里的 Path 对象,可以和以前绝大多数只接受字符串路径的标准库函数兼容使用:

  >>> p = Path('/tmp')

  # 可以直接对 Path 类型对象 p 进行 join

  >>> os.path.join(p, 'foo.txt')

  '/tmp/foo.txt'

所以,无需犹豫,赶紧把 pathlib 模块用起来吧。

Hint: 如果你使用的是更早的 Python 版本,可以尝试安装 pathlib2 模块 。

建议二:掌握如何流式读取大文件

几乎所有人都知道,在 Python 里读取文件有一种“标准做法”:首先使用 withopen(fine_name) 上下文管理器的方式获得一个文件对象,然后使用 for 循环迭代它,逐行获取文件里的内容。

下面是一个使用这种“标准做法”的简单示例函数:

  def count_nine(fname):

    """计算文件里包含多少个数字 '9'

    """

    count = 0

    with open(fname) as file:

      for line in file:

        count += line.count('9')

    return count

假如我们有一个文件 small_file.txt,那么使用这个函数可以轻松计算出 9 的数量。

  # small_file.txt

  feiowe9322nasd9233rl

  aoeijfiowejf8322kaf9a

  # OUTPUT: 3

  print(count_nine('small_file.txt'))

为什么这种文件读取方式会成为标准?这是因为它有两个好处:

  • with 上下文管理器会自动关闭打开的文件描述符
  • 在迭代文件对象时,内容是一行一行返回的,不会占用太多内存

标准做法的缺点

但这套标准做法并非没有缺点。如果被读取的文件里,根本就没有任何换行符,那么上面的第二个好处就不成立了。当代码执行到 forlineinfile 时,line 将会变成一个非常巨大的字符串对象,消耗掉非常可观的内存。

让我们来做个试验:有一个 5GB 大的文件 big_file.txt,它里面装满了和 small_file.txt 一样的随机字符串。只不过它存储内容的方式稍有不同,所有的文本都被放在了同一行里:

# FILE: big_file.txt
df2if283rkwefh... <剩余 5GB 大小> ...

如果我们继续使用前面的 count_nine 函数去统计这个大文件里 9 的个数。那么在我的笔记本上,这个过程会足足花掉 65 秒,并在执行过程中吃掉机器 2GB 内存 [注1]。

使用 read 方法分块读取

为了解决这个问题,我们需要暂时把这个“标准做法”放到一边,使用更底层的 file.read() 方法。与直接循环迭代文件对象不同,每次调用 file.read(chunk_size) 会直接返回从当前位置往后读取 chunk_size 大小的文件内容,不必等待任何换行符出现。

所以,如果使用 file.read() 方法,我们的函数可以改写成这样:

  def count_nine_v2(fname):

    """计算文件里包含多少个数字 '9',每次读取 8kb

    """

    count = 0

    block_size = 1024 * 8

    with open(fname) as fp:

      while True:

        chunk = fp.read(block_size)

        # 当文件没有更多内容时,read 调用将会返回空字符串 ''

        if not chunk:

          break

        count += chunk.count('9')

    return count

在新函数中,我们使用了一个 while 循环来读取文件内容,每次最多读取 8kb 大小,这样可以避免之前需要拼接一个巨大字符串的过程,把内存占用降低非常多。

利用生成器解耦代码

假如我们在讨论的不是 Python,而是其他编程语言。那么可以说上面的代码已经很好了。但是如果你认真分析一下 count_nine_v2 函数,你会发现在循环体内部,存在着两个独立的逻辑:数据生成(read 调用与 chunk 判断) 与 数据消费。而这两个独立逻辑被耦合在了一起。

正如我在《编写地道循环》里所提到的,为了提升复用能力,我们可以定义一个新的 chunked_file_reader 生成器函数,由它来负责所有与“数据生成”相关的逻辑。这样 count_nine_v3 里面的主循环就只需要负责计数即可。

  def chunked_file_reader(fp, block_size=1024 * 8):

    """生成器函数:分块读取文件内容

    """

    while True:

      chunk = fp.read(block_size)

      # 当文件没有更多内容时,read 调用将会返回空字符串 ''

      if not chunk:

        break

      yield chunk

  def count_nine_v3(fname):

    count = 0

    with open(fname) as fp:

      for chunk in chunked_file_reader(fp):

        count += chunk.count('9')

    return count

进行到这一步,代码似乎已经没有优化的空间了,但其实不然。iter(iterable) 是一个用来构造迭代器的内建函数,但它还有一个更少人知道的用法。当我们使用 iter(callable,sentinel) 的方式调用它时,会返回一个特殊的对象,迭代它将不断产生可调用对象 callable 的调用结果,直到结果为 setinel 时,迭代终止。

  def chunked_file_reader(file, block_size=1024 * 8):

    """生成器函数:分块读取文件内容,使用 iter 函数

    """

    # 首先使用 partial(fp.read, block_size) 构造一个新的无需参数的函数

    # 循环将不断返回 fp.read(block_size) 调用结果,直到其为 '' 时终止

    for chunk in iter(partial(file.read, block_size), ''):

      yield chunk

最终,只需要两行代码,我们就完成了一个可复用的分块文件读取函数。那么,这个函数在性能方面的表现如何呢?

和一开始的 2GB 内存/耗时 65 秒 相比,使用生成器的版本只需要 7MB 内存 / 12 秒 就能完成计算。效率提升了接近 4 倍,内存占用更是不到原来的 1%。

建议三:设计接受文件对象的函数

统计完文件里的 “9” 之后,让我们换一个需求。现在,我想要统计每个文件里出现了多少个英文元音字母(aeiou)。只要对之前的代码稍作调整,很快就可以写出新函数 count_vowels。

  def count_vowels(filename):

    """统计某个文件中,包含元音字母(aeiou)的数量

    """

    VOWELS_LETTERS = {'a', 'e', 'i', 'o', 'u'}

    count = 0

    with open(filename, 'r') as fp:

      for line in fp:

        for char in line:

          if char.lower() in VOWELS_LETTERS:

            count += 1

    return count

  # OUTPUT: 16

  print(count_vowels('small_file.txt'))

和之前“统计 9”的函数相比,新函数变得稍微复杂了一些。为了保证程序的正确性,我需要为它写一些单元测试。但当我准备写测试时,却发现这件事情非常麻烦,主要问题点如下:

  1. 函数接收文件路径作为参数,所以我们需要传递一个实际存在的文件
  2. 为了准备测试用例,我要么提供几个样板文件,要么写一些临时文件
  3. 而文件是否能被正常打开、读取,也成了我们需要测试的边界情况

如果,你发现你的函数难以编写单元测试,那通常意味着你应该改进它的设计。上面的函数应该如何改进呢?答案是:让函数依赖“文件对象”而不是文件路径。

修改后的函数代码如下:

  def count_vowels_v2(fp):

    """统计某个文件中,包含元音字母(aeiou)的数量

    """

    VOWELS_LETTERS = {'a', 'e', 'i', 'o', 'u'}

    count = 0

    for line in fp:

      for char in line:

        if char.lower() in VOWELS_LETTERS:

          count += 1

    return count

  # 修改函数后,打开文件的职责被移交给了上层函数调用者

  with open('small_file.txt') as fp:

    print(count_vowels_v2(fp))

这个改动带来的主要变化,在于它提升了函数的适用面。因为 Python 是“鸭子类型”的,虽然函数需要接受文件对象,但其实我们可以把任何实现了文件协议的 “类文件对象(file-like object)” 传入 count_vowels_v2 函数中。

而 Python 中有着非常多“类文件对象”。比如 io 模块内的 StringIO 对象就是其中之一。它是一种基于内存的特殊对象,拥有和文件对象几乎一致的接口设计。

利用 StringIO,我们可以非常方便的为函数编写单元测试。

  # 注意:以下测试函数需要使用 pytest 执行

  import pytest

  from io import StringIO

  @pytest.mark.parametrize(

    "content,vowels_count", [

      # 使用 pytest 提供的参数化测试工具,定义测试参数列表

      # (文件内容, 期待结果)

      ('', 0),

      ('Hello World!', 3),

      ('HELLO WORLD!', 3),

      ('你好,世界', 0),

    ]

  )

  def test_count_vowels_v2(content, vowels_count):

    # 利用 StringIO 构造类文件对象 "file"

    file = StringIO(content)

    assert count_vowels_v2(file) == vowels_count

使用 pytest 运行测试可以发现,函数可以通过所有的用例:

  ❯ pytest vowels_counter.py

  ====== test session starts ======

  collected 4 items

  vowels_counter.py ... [100%]

  ====== 4 passed in 0.06 seconds ======

而让编写单元测试变得更简单,并非修改函数依赖后的唯一好处。除了 StringIO 外,subprocess 模块调用系统命令时用来存储标准输出的 PIPE 对象,也是一种“类文件对象”。这意味着我们可以直接把某个命令的输出传递给 count_vowels_v2 函数来计算元音字母数:

  import subprocess

  # 统计 /tmp 下面所有一级子文件名(目录名)有多少元音字母

  p = subprocess.Popen(['ls', '/tmp'], stdout=subprocess.PIPE, encoding='utf-8')

  # p.stdout 是一个流式类文件对象,可以直接传入函数

  # OUTPUT: 42

  print(count_vowels_v2(p.stdout))

正如之前所说,将函数参数修改为“文件对象”,最大的好处是提高了函数的 适用面 和 可组合性。通过依赖更为抽象的“类文件对象”而非文件路径,给函数的使用方式开启了更多可能,StringIO、PIPE 以及任何其他满足协议的对象都可以成为函数的客户。

不过,这样的改造并非毫无缺点,它也会给调用方带来一些不便。假如调用方就是想要使用文件路径,那么就必须得自行处理文件的打开操作。

如何编写兼容二者的函数

有没有办法即拥有“接受文件对象”的灵活性,又能让传递文件路径的调用方更方便?答案是:有,而且标准库中就有这样的例子。

打开标准库里的 xml.etree.ElementTree 模块,翻开里面的 ElementTree.parse 方法。你会发现这个方法即可以使用文件对象调用,也接受字符串的文件路径。而它实现这一点的手法也非常简单易懂:

  def parse(self, source, parser=None):

    """*source* is a file name or file object, *parser* is an optional parser

    """

    close_source = False

    # 通过判断 source 是否有 "read" 属性来判定它是不是“类文件对象”

    # 如果不是,那么调用 open 函数打开它并负担起在函数末尾关闭它的责任

    if not hasattr(source, "read"):

      source = open(source, "rb")

      close_source = True

使用这种基于“鸭子类型”的灵活检测方式, count_vowels_v2 函数也同样可以被改造得更方便,我在这里就不再重复啦。

总结

文件操作我们在日常工作中经常需要接触的领域,使用更方便的模块、利用生成器节约内存以及编写适用面更广的函数,可以让我们编写出更高效的代码。

让我们最后再总结一下吧:

  • 使用 pathlib 模块可以简化文件和目录相关的操作,并让代码更直观
  • PEP-519 定义了表示“文件路径”的标准协议,Path 对象实现了这个协议
  • 通过定义生成器函数来分块读取大文件可以节约内存
  • 使用 iter(callable,sentinel) 可以在一些特定场景简化代码
  • 难以编写测试的代码,通常也是需要改进的代码
  • 让函数依赖“类文件对象”可以提升函数的适用面和可组合性

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 浅谈Python批处理文件夹中的txt文件

    1 文件处理形式  近期由于处理大量数据,所以对于采用python进行处理文件的一些操作也打算整理一下:接下来主要说一下如何处理目录下的一系列txt文件.首先看一下我们将要处理目录下的15个类似的数据文件,其中提取的数据如图所示,以及在读写文件时所需要的关键词,可以让程序正确读写相应的数据 2.代码段-python 接下来就是贴出相应的python代码,具体一些关键的注释我已经标注好了,具体数据结果就不展示了,如果大家想拿我的数据进行测试联系我就好,但是一般情况下在我标注的地方进行相应的修改就好

  • Python读取和处理文件后缀为.sqlite的数据文件(实例讲解)

    最近在弄一个项目分析的时候,看到有一个后缀为".sqlite"的数据文件,由于以前没怎么接触过,就想着怎么用python来打开并进行数据分析与处理,于是稍微研究了一下. SQLite是一款非常流行的关系型数据库,由于它非常轻盈,因此被大量应用程序采用. 像csv文件一样,SQLite可以将数据存储于单个数据文件,以便方便的分享给其他人员.许多编程语言都支持SQLite数据的处理,python语言也不例外. sqlite3是python的一个标准库,可以用于处理SQLite数据库. 用s

  • 详解使用Python处理文件目录的相关方法

    所有文件都包含在各个不同的目录下,不过Python也能轻松处理.os模块有许多方法能帮你创建,删除和更改目录. mkdir()方法 可以使用os模块的mkdir()方法在当前目录下创建新的目录们.你需要提供一个包含了要创建的目录名称的参数. 语法: os.mkdir("newdir") 例子: 下例将在当前目录下创建一个新目录test. #!/usr/bin/python # -*- coding: UTF-8 -*- import os # 创建目录test os.mkdir(&qu

  • Python3处理文件中每个词的方法

    本文实例讲述了Python3处理文件中每个词的方法.分享给大家供大家参考.具体实现方法如下: ''''' Created on Dec 21, 2012 处理文件中的每个词 @author: liury_lab ''' import codecs the_file = codecs.open('d:/text.txt', 'rU', 'UTF-8') for line in the_file: for word in line.split(): print(word, end = "|"

  • python 下载文件的几种方式分享

    1 .一般同步下载 示例代码: import requests import os def downlaod(url, file_path): headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:68.0) Gecko/20100101 Firefox/68.0" } r = requests.get(url=url, headers=headers) with open(file_p

  • Python读取文件的四种方式的实例详解

    目录 学生数量特别少的情况 停车场空间不够时怎么办? 怎么加快执行效率? 怎么加快处理速度? 结语 故事背景:最近在处理Wikipedia的数据时发现由于数据量过大,之前的文件读取和数据处理方法几乎不可用,或耗时非常久.今天学校安排统一核酸检查,刚好和文件读取的过程非常相似.正好借此机会和大家一起从头梳理一下几种文件读取方法. 故事设定:现在学校要求对所有同学进行核酸采集,每位同学先在宿舍内等候防护人员(以下简称“大白”)叫号,叫到自己时去停车场排队等候大白对自己进行采集,采集完之后的样本由大白

  • Python 处理文件的几种方式

    在这个世界上,人们每天都在用 Python 完成着不同的工作.而文件操作,则是大家最常需要解决的任务之一.使用 Python,你可以轻松为他人生成精美的报表,也可以用短短几行代码快速解析.整理上万份数据文件. 当我们编写与文件相关的代码时,通常会关注这些事情:我的代码是不是足够快?我的代码有没有事半功倍的完成任务? 在这篇文章中,我会与你分享与之相关的几个编程建议.我会向你推荐一个被低估的 Python 标准库模块.演示一个读取大文件的最佳方式.最后再分享我对函数设计的一点思考. 下面,让我们进

  • Python简单实现安全开关文件的两种方式

    本文实例讲述了Python简单实现安全开关文件的两种方式.分享给大家供大家参考,具体如下: 以下代码经Python3.3测试. 方式1: try: file = open('config.ini', 'w') print("It's a text file", file=file) except IOError as err: print('File error: ' + str(err)) finally: if 'file' in locals(): file.close() 方式

  • 教你用Python读取CSV文件的5种方式

    目录 第一招:简单的读取 第二招:用nametuple 第三招:用tuple类型转换 第四招:用DictReader 第五招:用字典转换 典型的数据集stocks.csv: 一个股票的数据集,其实就是常见的表格数据.有股票代码,价格,日期,时间,价格变动和成交量.这个数据集其实就是一个表格数据,有自己的头部和身体. 第一招:简单的读取 我们先来看一种简单读取方法,先用csv.reader()函数读取文件的句柄f生成一个csv的句柄,其实就是一个迭代器,我们看一下这个reader的源码: 喂给re

  • Python处理mat文件的三种方式小结

    目录 处理mat文件的三种方式 scipy h5py mat73 mat4py python操作.mat文件 python读取.mat格式 mat转图片 处理mat文件的三种方式 读书的时候,处理数据都是采用matlab,但毕业后当了程序员,matlab从此在自己的电脑上消失了(安装包太大,还要license,启动也好慢,不符合程序员的需求). 但是最近公司仿真的数据是以matlab的.mat格式存储的,需要读取出来处理,那就找找python相关的库吧,没有python干不了的活!!! mat文

  • Python中Selenium上传文件的几种方式

    目录 1. input 元素上传文件 2. input 元素隐藏 3. 文件选择对话框 4. 使用 pywinauto 上传文件 5. pyautogui 6. 并发问题 Selenium 封装了现成的文件上传操作.但是随着现代前端框架的发展,文件上传的方式越来越多样.而有一些文件上传的控件,要做自动化控制会更复杂一些,这篇文章主要讨论在复杂情况下,如何通过自动化完成文件上传. 1. input 元素上传文件 如果页面需要文件上传,那么在大多数情况下,都能在页面源代码中找到一个input的元素.

  • 深入解读Python解析XML的几种方式

    在XML解析方面,Python贯彻了自己"开箱即用"(batteries included)的原则.在自带的标准库中,Python提供了大量可以用于处理XML语言的包和工具,数量之多,甚至让Python编程新手无从选择. 本文将介绍深入解读利用Python语言解析XML文件的几种方式,并以笔者推荐使用的ElementTree模块为例,演示具体使用方法和场景.文中所使用的Python版本为2.7. 一.什么是XML? XML是可扩展标记语言(Extensible Markup Langu

  • 用 Python 连接 MySQL 的几种方式详解

    尽管很多 NoSQL 数据库近几年大放异彩,但是像 MySQL 这样的关系型数据库依然是互联网的主流数据库之一,每个学 Python 的都有必要学好一门数据库,不管你是做数据分析,还是网络爬虫,Web 开发.亦或是机器学习,你都离不开要和数据库打交道,而 MySQL 又是最流行的一种数据库,这篇文章介绍 Python 操作 MySQL 的几种方式,你可以在实际开发过程中根据实际情况合理选择. 1.MySQL-python MySQL-python 又叫 MySQLdb,是 Python 连接 M

  • Python实现定时执行任务的三种方式简单示例

    本文实例讲述了Python实现定时执行任务的三种方式.分享给大家供大家参考,具体如下: 1.定时任务代码 #!/user/bin/env python # @Time :2018/6/7 16:31 # @Author :PGIDYSQ #@File :PerformTaskTimer.py #定时执行任务命令 import time,os,sched schedule = sched.scheduler(time.time,time.sleep) def perform_command(cmd

随机推荐