Python实现滑动平均(Moving Average)的例子

Python中滑动平均算法(Moving Average)方案:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np

# 等同于MATLAB中的smooth函数,但是平滑窗口必须为奇数。

# yy = smooth(y) smooths the data in the column vector y ..
# The first few elements of yy are given by
# yy(1) = y(1)
# yy(2) = (y(1) + y(2) + y(3))/3
# yy(3) = (y(1) + y(2) + y(3) + y(4) + y(5))/5
# yy(4) = (y(2) + y(3) + y(4) + y(5) + y(6))/5
# ...

def smooth(a,WSZ):
  # a:原始数据,NumPy 1-D array containing the data to be smoothed
  # 必须是1-D的,如果不是,请使用 np.ravel()或者np.squeeze()转化
  # WSZ: smoothing window size needs, which must be odd number,
  # as in the original MATLAB implementation
  out0 = np.convolve(a,np.ones(WSZ,dtype=int),'valid')/WSZ
  r = np.arange(1,WSZ-1,2)
  start = np.cumsum(a[:WSZ-1])[::2]/r
  stop = (np.cumsum(a[:-WSZ:-1])[::2]/r)[::-1]
  return np.concatenate(( start , out0, stop ))

# another one,边缘处理的不好

"""
def movingaverage(data, window_size):
  window = np.ones(int(window_size))/float(window_size)
  return np.convolve(data, window, 'same')
"""

# another one,速度更快
# 输出结果 不与原始数据等长,假设原数据为m,平滑步长为t,则输出数据为m-t+1

"""
def movingaverage(data, window_size):
  cumsum_vec = np.cumsum(np.insert(data, 0, 0))
  ma_vec = (cumsum_vec[window_size:] - cumsum_vec[:-window_size]) / window_size
  return ma_vec
"""

以上这篇Python实现滑动平均(Moving Average)的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

    ​ 1.滑动平均概念 滑动平均滤波法(又称递推平均滤波法),时把连续取N个采样值看成一个队列 ,队列的长度固定为N ,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)  把队列中的N个数据进行算术平均运算,就可获得新的滤波结果.N值的选取:流量,N=12:压力:N=4:液面,N=4~12:温度,N=1~4 优点:  对周期性干扰有良好的抑制作用,平滑度高  适用于高频振荡的系统 缺点:  灵敏度低  对偶然出现的脉冲性干扰的抑制作用较差  不易消除由于脉冲干扰所引起的采样

  • Python基于滑动平均思想实现缺失数据填充的方法

    在时序数据处理过程中,我们经常会遇到由于现实中的种种原因导致获取的数据缺失的情况,这里的数据缺失不单单是指为'NaN'的数据,比如在AQI数据中,0是不可能出现的,这时候如果数据中出现了0也就是数据缺失了,最近正好在拿一个污染物的数据在做模型分析,中间就遇到了数据缺失值的问题,数据量本身不大,如果直接对缺失值进行丢弃处理的话会进一步减小数据量,所以这里考虑采用数据填充的方法来实现缺失数据的填充.我做了两个版本其中,第一个版本很简单可以不看,主要是简单实现以下效果.具体实现如下: #!usr/bi

  • TensorFlow 滑动平均的示例代码

    滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.ExponentialMovingAverage(decay,num_updates) 参数decay `shadow_variable = decay * shadow_variable + (1 - decay) * variable` 参数num_updates `min(decay, (1 +

  • Python实现滑动平均(Moving Average)的例子

    Python中滑动平均算法(Moving Average)方案: #!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np # 等同于MATLAB中的smooth函数,但是平滑窗口必须为奇数. # yy = smooth(y) smooths the data in the column vector y .. # The first few elements of yy are given by # yy(1) = y(1

  • Python:Numpy 求平均向量的实例

    如下所示: >>> import numpy as np >>> a = np.array([[1, 2, 3], [3, 1, 2]]) >>> b = np.array([[5, 2, 6], [5, 1, 2]]) >>> a array([[1, 2, 3], [3, 1, 2]]) >>> b array([[5, 2, 6], [5, 1, 2]]) >>> c = a + b >

  • python 同时读取多个文件的例子

    Python中打开文本使用的是with语句,比如打开一个文件并读取每一行 with open(filename) as fp: for line in fp: # do something 为了同时读取多个文件,可以使用下面的代码 with open(filename1) as fp1, open(filename2) as fp2, open(filename3) as fp3: for l1 in fp1: l2 = fp2.readline() l3 = fp3.readline() #

  • python判断一个对象是否可迭代的例子

    如何判断一个对象是可迭代对象? 方法是通过collections模块的Iterable类型判断: >>> from collections import Iterable >>> isinstance('abc',Iterable) True >>> isinstance([1,2,3,4],Iterable) True >>> isinstance(1234,Iterable) False >>> isinstan

  • python之pexpect实现自动交互的例子

    Pexpect 是 Expect 语言的一个 Python 实现,是一个用来启动子程序,并使用正则表达式对程序输出做出特定响应,以此实现与其自动交互的 Python 模块. Pexpect 的使用范围很广,可以用来实现与 ssh.ftp .telnet 等程序的自动交互:可以用来自动复制软件安装包并在不同机器自动安装:还可以用来实现软件测试中与命令行交互的自动化. 整体来说大致的流程包括: 运行程序 程序要求人的判断和输入 Expect 通过关键字匹配 根据关键字向程序发送符合的字符 基本使用流

  • 使用python实现滑动验证码功能

    首先安装一个需要用到的模块 pip install social-auth-app-django 安装完后在终端输入pip list会看到 social-auth-app-django 3.1.0 social-auth-core 3.0.0 然后可以来我的github,下载关于滑动验证码的这个demo:https://github.com/Edward66/slide_auth_code 下载完后启动项目 python manage.py runserver 启动这个项目后,在主页就能看到示例

  • python实现PID算法及测试的例子

    PID算法实现 import time class PID: def __init__(self, P=0.2, I=0.0, D=0.0): self.Kp = P self.Ki = I self.Kd = D self.sample_time = 0.00 self.current_time = time.time() self.last_time = self.current_time self.clear() def clear(self): self.SetPoint = 0.0 s

随机推荐