python多线程高级锁condition简单用法示例

本文实例讲述了python多线程高级锁condition简单用法。分享给大家供大家参考,具体如下:

多线程编程中如果使用Condition对象代替lock, 能够实现在某个事件触发后才处理数据, condition中含有的方法:

  • - wait:线程挂起,收到notify通知后继续运行
  • - notify:通知其他线程, 解除其它线程的wai状态
  • - notifyAll(): 通知所有线程
  • - acquire和release: 获得锁和解除锁, 与lock类似,
  • - enter和exit使得对象支持上下文操作:
  def __enter__(self):
    return self._lock.__enter__()
  def __exit__(self, *args):
    return self._lock.__exit__(*args)

代码:

import threading
from threading import Condition
# condition
class XiaoAi(threading.Thread):
  def __init__(self, cond):
    self.cond = cond
    super().__init__(name="xiaoai")
  def run(self):
    self.cond.acquire()
    self.cond.wait()
    print('{}:ennn. '.format(self.name))
    self.cond.notify()
    self.cond.wait()
    print('{}:好嗒. '.format(self.name))
    self.cond.release()
class TianMao(threading.Thread):
  def __init__(self, cond):
    super().__init__(name="tiaomao")
    self.cond = cond
  def run(self):
    self.cond.acquire()
    print('{}:hello ~ xiaoai. '.format(self.name))
    self.cond.notify()
    self.cond.wait()
    print('{}:我们来念一首诗吧! . '.format(self.name))
    self.cond.notify()
    self.cond.release()
if __name__ == '__main__':
  condition = Condition()
  xiaoai = XiaoAi(condition)
  tianmao = TianMao(condition)
  # 启动顺序很重要
  xiaoai.start()
  tianmao.start()

打印结果:

tiaomao:hello ~ xiaoai.
xiaoai:ennn.
tiaomao:我们来念一首诗吧! .
xiaoai:好嗒

总结:

这个比较鸡肋

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python全局锁中如何合理运用多线程(多进程)

    Python全局锁 (1)全局锁导致的问题 全局锁的英文简称是GIL,全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定,每个线程在执行时候都需要先获取GIL,保证同一时刻只有一个线程可以执行代码,即同一时刻只有一个线程使用CPU,也就是说多线程并不是真正意义上的同时执行. 每个CPU在同一时间只能执行一个线程(在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念.但并发和并行

  • Python队列、进程间通信、线程案例

    进程互斥锁 多进程同时抢购余票 # 并发运行,效率高,但竞争写同一文件,数据写入错乱 # data.json文件内容为 {"ticket_num": 1} import json import time from multiprocessing import Process def search(user): with open('data.json', 'r', encoding='utf-8') as f: dic = json.load(f) print(f'用户{user}查看

  • Python多线程模块Threading用法示例小结

    本文实例讲述了Python多线程模块Threading用法.分享给大家供大家参考,具体如下: 步入正题前,先准备下基本知识,线程与进程的概念. 相信作为一个测试人员,如果从理论概念上来说其两者的概念或者区别,估计只会一脸蒙蔽,这里就举个例子来说明下其中的相关概念. 平安夜刚过,你是吃到了苹果还是香蕉呢...其实当你用手去接下对方苹果的时候,你的手臂就可以比喻成进程,你的五个手指就可以比喻成线程,所以很明显,线程可以说是进程的细化,没有进程就不会有线程. 这里还是说下必要的概念:    进程 是操

  • Python 线程池用法简单示例

    本文实例讲述了Python 线程池用法.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #! python3 ''' Created on 2019-10-2 @author: Administrator ''' from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import os,time,random def task(n): print('%s is runing' %

  • python多线程并发及测试框架案例

    这篇文章主要介绍了python多线程并发及测试框架案例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.循环创建多个线程,并通过循环启动执行 import threading from datetime import * from time import sleep # 单线程执行 def test(): print('hello world') t = threading.Thread(target=test) t.start() # 多线

  • Python线程指南分享

    本文介绍了Python对于线程的支持,包括"学会"多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例. 注意:本文基于Python2.4完成,:如果看到不明白的词汇请记得百度谷歌或维基,whatever. 1. 线程基础 1.1. 线程状态 线程有5种状态,状态转换的过程如下图所示: thread_stat_simple 1.2. 线程同步(锁) 多线程的优势在于可以同时运行多个任务(至少感觉起来是这样).但是当线程需要共享数据时,可能存在数据不同步的问题.考虑

  • python多线程高级锁condition简单用法示例

    本文实例讲述了python多线程高级锁condition简单用法.分享给大家供大家参考,具体如下: 多线程编程中如果使用Condition对象代替lock, 能够实现在某个事件触发后才处理数据, condition中含有的方法: - wait:线程挂起,收到notify通知后继续运行 - notify:通知其他线程, 解除其它线程的wai状态 - notifyAll(): 通知所有线程 - acquire和release: 获得锁和解除锁, 与lock类似, - enter和exit使得对象支持

  • Python 多线程知识点总结及实例用法

    Python 多线程 多线程类似于同时执行多个不同程序,多线程运行有如下优点: 使用线程可以把占据长时间的程序中的任务放到后台去处理. 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度 程序的运行速度可能加快 在一些等待的任务实现上如用户输入.文件读写和网络收发数据等,线程就比较有用了.在这种情况下我们可以释放一些珍贵的资源如内存占用等等. 线程在执行过程中与进程还是有区别的.每个独立的进程有一个程序运行的入口.顺序执行序列和程序的出口.

  • Python装饰器原理与简单用法实例分析

    本文实例讲述了Python装饰器原理与简单用法.分享给大家供大家参考,具体如下: 今天整理装饰器,内嵌的装饰器.让装饰器带参数等多种形式,非常复杂,让人头疼不已.但是突然间发现了装饰器的奥秘,原来如此简单.... 第一步 :从最简单的例子开始 # -*- coding:gbk -*- '''示例1: 使用语法糖@来装饰函数,相当于"myfunc = deco(myfunc)" 但发现新函数只在第一次被调用,且原函数多调用了一次''' def deco(func): print(&quo

  • python中前缀运算符 *和 **的用法示例详解

    这篇主要探讨 ** 和 * 前缀运算符,**在变量之前使用的*and **运算符. 一个星(*):表示接收的参数作为元组来处理 两个星(**):表示接收的参数作为字典来处理 简单示例: >>> numbers = [2, 1, 3, 4, 7] >>> more_numbers = [*numbers, 11, 18] >>> print(*more_numbers, sep=', ') 2, 1, 3, 4, 7, 11, 18 用途: 使用 * 和

  • python多线程互斥锁与死锁

    目录 一.多线程间的资源竞争 二.互斥锁 1.互斥锁示例 2.可重入锁与不可重入锁 三.死锁 一.多线程间的资源竞争 以下列task1(),task2()两个函数为例,分别将对全局变量num加一重复一千万次循环(数据大一些,太小的话执行太快,达不到验证的效果). import threading import time num = 0 def task1(nums):     global num     for i in range(nums):         num += 1     pr

  • Python标准库中的logging用法示例详解

    目录 1.logging的介绍 2.简单用法示例 3.日志级别 4.打印格式的各个参数 5.日志输出到指定文件 6.日志回滚(按照文件大小滚动) 7.日志回滚(按照时间滚动) 1.logging的介绍 logging是Python标准库中记录常用的记录日志库,通过logging模块存储各种格式的日志,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等. 2.简单用法示例 首先创建一个logger.py的文件,其里面的代码如下所示: import logging # 1.创

  • python matplotlib 注释文本箭头简单代码示例

    注释文本箭头 结果展示: 完整代码示例: import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5)) ax.set_aspect(1) x1 = -1 + np.random.randn(100) y1 = -1 + np.random.randn(100) x2 = 1. + np.random.randn(100) y2 = 1. + np.random.randn(100

  • python中的插入排序的简单用法

    现在大家学习python掌握内容了解太多太多,但是最重要的不是掌握了解算法的使用,而是了解算法原理远比使用算法命令更重要,现在大家了解算法应该都不低于5种了吧,比如排序算法.冒泡算法.归并算法等等,那对本期主题插入算法有过了解吗?如果没有了解的小伙伴可以跟着小编一起来了解学习. 插入排序简介: 将列表分为有序区和无序区两个部分,最初有序区只有一个元素,即第一个元素. 然后每次从无序区选择一个元素,插入到有序区中,直到无序区为空. 运行图示: 实现代码: # 选择排序 O(n2) def inse

  • python 多线程爬取壁纸网站的示例

    基本开发环境 · Python 3.6 · Pycharm 需要导入的库 目标网页分析 网站是静态网站,没有加密,可以直接爬取 整体思路: 1.先在列表页面获取每张壁纸的详情页地址 2.在壁纸详情页面获取壁纸真实高清url地址 3.保存地址 代码实现 模拟浏览器请请求网页,获取网页数据 这里只选择爬取前10页的数据 代码如下 import threading import parsel import requests def get_html(html_url): ''' 获取网页源代码 :pa

  • python多线程互斥锁与死锁问题详解

    目录 一.多线程共享全局变量 二.给线程加一把锁锁 三.死锁问题 总结 一.多线程共享全局变量 代码实现的功能: 创建work01与worker02函数,对全局变量进行加一操作创建main函数,生成两个线程,同时调用两个函数 代码如下: import threading result = 0 # 定义全局变量result def work1(num): global result for i in range(num): result += 1 print('------from work1--

随机推荐