MongoDB入门教程之索引操作浅析

这些天项目改版,时间比较紧,博客也就没跟得上,还望大家见谅。

好,今天分享下mongodb中关于索引的基本操作,我们日常做开发都避免不了要对程序进行性能优化,而程序的操作无非就是CURD,通常我们

又会花费50%的时间在R上面,因为Read操作对用户来说是非常敏感的,处理不好就会被人唾弃,呵呵。

从算法上来说有5种经典的查找,具体的可以参见我的算法速成系列,这其中就包括我们今天所说的“索引查找”,如果大家对sqlserver比较了解

的话,相信索引查找能给我们带来什么样的性能提升吧。

我们首先插入10w数据,上图说话:

 一:性能分析函数(explain)

好了,数据已经插入成功,既然我们要做分析,肯定要有分析的工具,幸好mongodb中给我们提供了一个关键字叫做“explain",那么怎么用呢?

还是看图,注意,这里的name字段没有建立任何索引,这里我就查询一个“name10000”的姓名。

仔细看红色区域,有几个我们关心的key。

cursor:       这里出现的是”BasicCursor",什么意思呢,就是说这里的查找采用的是“表扫描”,也就是顺序查找,很悲催啊。

nscanned:  这里是10w,也就是说数据库浏览了10w个文档,很恐怖吧,这样玩的话让人受不了啊。

n:             这里是1,也就是最终返回了1个文档。

millis:        这个就是我们最最最....关心的东西,总共耗时114毫秒。

 二:建立索引(ensureIndex)

在10w条这么简单的集合中查找一个文档要114毫秒有一点点让人不能接收,好,那么我们该如何优化呢?mongodb中给

我们带来了索引查找,看看能不能让我们的查询一飞冲天.....

这里我们使用了ensureIndex在name上建立了索引。”1“:表示按照name进行升序,”-1“:表示按照name进行降序。

我的神啊,再来看看这些敏感信息。

   cursor:       这里出现的是”BtreeCursor",这么牛X,mongodb采用B树的结构来存放索引,索引名为后面的“name_1"。

 nscanned:  我擦,数据库只浏览了一个文档就OK了。

   n:             直接定位返回。

millis:        看看这个时间真的不敢相信,秒秒杀。

通过这个例子相信大家对索引也有了感官方面的认识了吧。

 三:唯一索引

和sqlserver一样都可以建立唯一索引,重复的键值自然就不能插入,在mongodb中的使用方法是:

db.person.ensureIndex({"name":1},{"unique":true})。

 四:组合索引

有时候我们的查询不是单条件的,可能是多条件,比如查找出生在‘1989-3-2'名字叫‘jack'的同学,那么我们可以建立“姓名”和"生日“的联合索引来加速查询。

看到上图,大家或者也知道name跟birthday的不同,建立的索引也不同,升序和降序的顺序不同都会产生不同的索引,

那么我们可以用getindexes来查看下person集合中到底生成了那些索引。

此时我们肯定很好奇,到底查询优化器会使用哪个查询作为操作,呵呵,还是看看效果图:

看完上图我们要相信查询优化器,它给我们做出的选择往往是最优的,因为我们做查询时,查询优化器会使用我们建立的这些索引来创建查询方案,

如果某一个先执行完则其他查询方案被close掉,这种方案会被mongodb保存起来,当然如果非要用自己指定的查询方案,这也是

可以的,在mongodb中给我们提供了hint方法让我们可以暴力执行。

 五: 删除索引

可能随着业务需求的变化,原先建立的索引可能没有存在的必要了,可能有的人想说没必要就没必要呗,但是请记住,索引会降低CUD这三

种操作的性能,因为这玩意需要实时维护,所以啥问题都要综合考虑一下,这里就把刚才建立的索引清空掉来演示一下:dropIndexes的使用。

(0)

相关推荐

  • MongoDB索引使用详解

    索引就像书的目录,如果查找某内容在没有目录的帮助下,只能全篇查找翻阅,这导致效率非常的低下:如果在借助目录情况下,就能很快的定位具体内容所在区域,效率会直线提高. 索引简介 首先打开命令行,输入mongo.默认mongodb会连接名为test的数据库. ➜ ~ mongo MongoDB shell version: 2.4.9 connecting to: test > show collections > 可以使用show collections/tables查看数据库为空. 然后在mon

  • MongoDB查询字段没有创建索引导致的连接超时异常解案例分享

    今天在现场的哥们发来异常,让我解决,错误信息如下: 复制代码 代码如下: HTTP Status 500 - Read operation to server 192.168.1.110:20001 failed on database wpdb; nested exception is com.mongodb.MongoException$Network: Read operation to server 192.168.1.110:20001 failed on database wpdb

  • pymongo给mongodb创建索引的简单实现方法

    本文实例讲述了pymongo给mongodb创建索引的简单实现方法.分享给大家供大家参考.具体如下: 下面的代码给user的user_name字段创建唯一索引 import pymongo mongo = pymongo.Connection('localhost') collection = mongo['database']['user'] collection.ensure_index('user_name', unique=True) 希望本文所述对大家的Python程序设计有所帮助.

  • MongoDB学习笔记(六) MongoDB索引用法和效率分析

    MongoDB中的索引其实类似于关系型数据库,都是为了提高查询和排序的效率的,并且实现原理也基本一致.由于集合中的键(字段)可以是普通数据类型,也可以是子文档.MongoDB可以在各种类型的键上创建索引.下面分别讲解各种类型的索引的创建,查询,以及索引的维护等. 一.创建索引 1. 默认索引 MongoDB有个默认的"_id"的键,他相当于"主键"的角色.集合创建后系统会自动创建一个索引在"_id"键上,它是默认索引,索引名叫"_id_

  • MongoDB教程之索引介绍

    一.索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧.下面是创建索引的命令:   复制代码 代码如下: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立:   复制代码 代码如下: > db.test.getIndexes() 删除索引的命令是:   复制代码 代码如下: > db.test.dropIndex({"username"

  • MongoDB查询性能优化验证及验证

    结论: 1. 200w数据,合理使用索引的情况下,单个stationId下4w数据.mongodb查询和排序的性能理想,无正则时client可以在600ms+完成查询,qps300+.有正则时client可以在1300ms+完成查询,qps140+. 2. Mongodb的count性能比较差,非并发情况下client可以在330ms完成查询,在并发情况下则需要1-3s.可以考虑估算总数的方法,http://blog.sina.com.cn/s/blog_56545fd30101442b.htm

  • Mongodb索引的优化

    MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案.MongoDB索引几乎和关系型数据库的索引一样.MongoDB的查询优化器能够使用这种数据结构来快速的对集合(collection)中的文档(collection)进行寻找和排序.准确来说,这些索引是通过B-Tree索引来实现的.在命令行中,可以通过调用ensureIndex()函数来建立索引,该函数指定一个到多个需要索引的字段,下面介绍mongodb索引如何优化 一.

  • pymongo为mongodb数据库添加索引的方法

    本文实例讲述了pymongo为mongodb数据库添加索引的方法.分享给大家供大家参考.具体实现方法如下: from pymongo import ASCENDING, DESCENDING posts.create_index([("date", DESCENDING), ("author", ASCENDING)]) 返回: u'date_-1_author_1' 希望本文所述对大家的Python程序设计有所帮助.

  • 如何对 MongoDB 进行性能优化(五个简单步骤)

    MongoDB 一直是最流行的 NoSQL,而根据 DB-Engines Ranking 最新的排行,时下 MongoDB 已经击败 PostgreSQL 跃居数据库总排行的第四位,仅次于 Oracle.MySQL 和 Microsoft SQL Server,此文中总结了如何对 MongoDB 进行性能调优. 大家在使用MongoDB的时候有没有碰到过性能问题呢?这里总结了MongoDB性能优化的五个步骤,希望能够有所帮助. 第一步:找出慢语句 一般来说查询语句太慢和性能问题瓶颈有着直接的关系

  • MongoDB中创建索引需要注意的事项

    上周在 ruby-china 上发了帖子<MongoDB 那些坑>,反映相当热烈,许多回复很有见地,其中一位童鞋深入的提到 MongoDB 建索引方法的问题,引发我更深入的了解了 MongoDB 建索引的方法和一些注意事项. 在 <MongoDB 那些坑>中提到,在前台直接运行建立索引命令的话,将造成整个数据库阻塞,因此索引建议使用 background 的方式建立.但是这也会带来一定的问题,在 2.6 版本之前,在 secondary server 中即使使用 backgroun

  • MongoDB性能优化及监控

    MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的. 一.索引 MongoDB 提供了多样性的索引支持,索引信息被保存在system.indexes 中,且默认总是为_id创建索引,它的索引使用基本和MySQL 等关系型数据库一样.其实可以这样说说,索引是凌驾于数据存储系统之上的另一层系统,所以各种结构迥异的存

随机推荐