详解使用Redis SETNX 命令实现分布式锁

使用Redis的 SETNX 命令可以实现分布式锁,下文介绍其实现方法。

SETNX命令简介

命令格式

SETNX key value

将 key 的值设为 value,当且仅当 key 不存在。

若给定的 key 已经存在,则 SETNX 不做任何动作。

SETNX 是SET if Not eXists的简写。

返回值

返回整数,具体为

- 1,当 key 的值被设置

- 0,当 key 的值没被设置

例子

redis> SETNX mykey “hello”
(integer) 1
redis> SETNX mykey “hello”
(integer) 0
redis> GET mykey
“hello”
redis>

使用SETNX实现分布式锁

多个进程执行以下Redis命令:

SETNX lock.foo <current Unix time + lock timeout + 1>

如果 SETNX 返回1,说明该进程获得锁,SETNX将键 lock.foo 的值设置为锁的超时时间(当前时间 + 锁的有效时间)。

如果 SETNX 返回0,说明其他进程已经获得了锁,进程不能进入临界区。进程可以在一个循环中不断地尝试 SETNX 操作,以获得锁。

解决死锁

考虑一种情况,如果进程获得锁后,断开了与 Redis 的连接(可能是进程挂掉,或者网络中断),如果没有有效的释放锁的机制,那么其他进程都会处于一直等待的状态,即出现“死锁”。

上面在使用 SETNX 获得锁时,我们将键 lock.foo 的值设置为锁的有效时间,进程获得锁后,其他进程还会不断的检测锁是否已超时,如果超时,那么等待的进程也将有机会获得锁。

然而,锁超时时,我们不能简单地使用 DEL 命令删除键 lock.foo 以释放锁。考虑以下情况,进程P1已经首先获得了锁 lock.foo,然后进程P1挂掉了。进程P2,P3正在不断地检测锁是否已释放或者已超时,执行流程如下:

  • P2和P3进程读取键 lock.foo 的值,检测锁是否已超时(通过比较当前时间和键 lock.foo 的值来判断是否超时)
  • P2和P3进程发现锁 lock.foo 已超时
  • P2执行 DEL lock.foo命令
  • P2执行 SETNX lock.foo命令,并返回1,即P2获得锁
  • P3执行 DEL lock.foo命令将P2刚刚设置的键 lock.foo 删除(这步是由于P3刚才已检测到锁已超时)
  • P3执行 SETNX lock.foo命令,并返回1,即P3获得锁
  • P2和P3同时获得了锁

从上面的情况可以得知,在检测到锁超时后,进程不能直接简单地执行 DEL 删除键的操作以获得锁。

为了解决上述算法可能出现的多个进程同时获得锁的问题,我们再来看以下的算法。

我们同样假设进程P1已经首先获得了锁 lock.foo,然后进程P1挂掉了。接下来的情况:

1、进程P4执行 SETNX lock.foo 以尝试获取锁

2、由于进程P1已获得了锁,所以P4执行 SETNX lock.foo 返回0,即获取锁失败

3、P4执行 GET lock.foo 来检测锁是否已超时,如果没超时,则等待一段时间,再次检测

4、如果P4检测到锁已超时,即当前的时间大于键 lock.foo 的值,P4会执行以下操作

GETSET lock.foo <current Unix timestamp + lock timeout + 1>

5、由于 GETSET 操作在设置键的值的同时,还会返回键的旧值,通过比较键 lock.foo 的旧值是否小于当前时间,可以判断进程是否已获得锁

6、假如另一个进程P5也检测到锁已超时,并在P4之前执行了 GETSET 操作,那么P4的 GETSET 操作返回的是一个大于当前时间的时间戳,这样P4就不会获得锁而继续等待。注意到,即使P4接下来将键 lock.foo 的值设置了比P5设置的更大的值也没影响。

另外,值得注意的是,在进程释放锁,即执行 DEL lock.foo 操作前,需要先判断锁是否已超时。如果锁已超时,那么锁可能已由其他进程获得,这时直接执行 DEL lock.foo 操作会导致把其他进程已获得的锁释放掉。

程序代码

用以下Python代码来实现上述的使用 SETNX 命令作分布式锁的算法。

LOCK_TIMEOUT = 3
lock = 0
lock_timeout = 0
lock_key = 'lock.foo'

# 获取锁
while lock != 1:
  now = int(time.time())
  lock_timeout = now + LOCK_TIMEOUT + 1
  lock = redis_client.setnx(lock_key, lock_timeout)
  if lock == 1 or (now > int(redis_client.get(lock_key))) and now > int(redis_client.getset(lock_key, lock_timeout)):
    break
  else:
    time.sleep(0.001)

# 已获得锁
do_job()

# 释放锁
now = int(time.time())
if now < lock_timeout:
  redis_client.delete(lock_key)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于Redis实现分布式锁以及任务队列

    一.前言 双十一刚过不久,大家都知道在天猫.京东.苏宁等等电商网站上有很多秒杀活动,例如在某一个时刻抢购一个原价1999现在秒杀价只要999的手机时,会迎来一个用户请求的高峰期,可能会有几十万几百万的并发量,来抢这个手机,在高并发的情形下会对数据库服务器或者是文件服务器应用服务器造成巨大的压力,严重时说不定就宕机了,另一个问题是,秒杀的东西都是有量的,例如一款手机只有10台的量秒杀,那么,在高并发的情况下,成千上万条数据更新数据库(例如10台的量被人抢一台就会在数据集某些记录下 减1),那次这个

  • redisson实现分布式锁原理

    Redisson分布式锁 之前的基于注解的锁有一种锁是基本redis的分布式锁,锁的实现我是基于redisson组件提供的RLock,这篇来看看redisson是如何实现锁的. 不同版本实现锁的机制并不相同 引用的redisson最近发布的版本3.2.3,不同的版本可能实现锁的机制并不相同,早期版本好像是采用简单的setnx,getset等常规命令来配置完成,而后期由于redis支持了脚本Lua变更了实现原理. <dependency> <groupId>org.redisson&

  • Redis数据库中实现分布式锁的方法

    分布式锁是一个在很多环境中非常有用的原语,它是不同进程互斥操作共享资源的唯一方法.有很多的开发库和博客描述如何使用Redis实现DLM(Distributed Lock Manager),但是每个开发库使用不同的方式,而且相比更复杂的设计与实现,很多库使用一些简单低可靠的方式来实现. 这篇文章尝试提供更标准的算法来使用Redis实现分布式锁.我们提出一种算法,叫做Relock,它实现了我们认为比vanilla单一实例方式更安全的DLM(分布式锁管理).我们希望社区分析它并提供反馈,以做为更加复杂

  • 如何操作Redis和zookeeper实现分布式锁

    如何操作Redis和zookeeper实现分布式锁 在分布式场景下,有很多种情况都需要实现最终一致性.在设计远程上下文的领域事件的时候,为了保证最终一致性,在通过领域事件进行通讯的方式中,可以共享存储(领域模型和消息的持久化数据源),或者做全局XA事务(两阶段提交,数据源可分开),也可以借助消息中间件(消费者处理需要能幂等).通过Observer模式来发布领域事件可以提供很好的高并发性能,并且事件存储也能追溯更小粒度的事件数据,使各个应用系统拥有更好的自治性. 1.分布式锁 分布式锁一般用在分布

  • 详解Java如何实现基于Redis的分布式锁

    前言 单JVM内同步好办, 直接用JDK提供的锁就可以了,但是跨进程同步靠这个肯定是不可能的,这种情况下肯定要借助第三方,我这里实现用Redis,当然还有很多其他的实现方式.其实基于Redis实现的原理还算比较简单的,在看代码之前建议大家先去看看原理,看懂了之后看代码应该就容易理解了. 我这里不实现JDK的java.util.concurrent.locks.Lock接口,而是自定义一个,因为JDK的有个newCondition方法我这里暂时没实现.这个Lock提供了5个lock方法的变体,可以

  • redis中使用java脚本实现分布式锁

    redis被大量用在分布式的环境中,自然而然分布式环境下的锁如何解决,立马成为一个问题.例如我们当前的手游项目,服务器端是按业务模块划分服务器的,有应用服,战斗服等,但是这两个vm都有可能同时改变玩家的属性,这如果在同一个vm下面,就很容易加锁,但如果在分布式环境下就没那么容易了,当然利用redis现有的功能也有解决办法,比如redis的脚本. redis在2.6以后的版本中增加了Lua脚本的功能,可以通过eval命令,直接在RedisServer环境中执行Lua脚本,并且可以在Lua脚本中调用

  • Redis上实现分布式锁以提高性能的方案研究

    背景: 在很多互联网产品应用中,有些场景需要加锁处理,比如:秒杀,全局递增ID,楼层生成等等.大部分是解决方案基于DB实现的,Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系. 项目实践 任务队列用到分布式锁的情况比较多,在将业务逻辑中可以异步处理的操作放入队列,在其他线程中处理后出队,此时队列中使用了分布式锁,保证入队和出队的一致性.关于redis队列这块的逻辑分析,我将在下一次对其进行总结,此处先略过. 接下来对redis实现的分

  • Redis实现分布式锁的几种方法总结

    Redis实现分布式锁的几种方法总结 分布式锁是控制分布式系统之间同步访问共享资源的一种方式.在分布式系统中,常常需要协调他们的动作.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁. 我们来假设一个最简单的秒杀场景:数据库里有一张表,column分别是商品ID,和商品ID对应的库存量,秒杀成功就将此商品库存量-1.现在假设有1000个线程来秒杀两件商品,500个线程秒杀第一个商品,

  • Redis构建分布式锁

    1.前言 为什么要构建锁呢?因为构建合适的锁可以在高并发下能够保持数据的一致性,即客户端在执行连贯的命令时上锁的数据不会被别的客户端的更改而发生错误.同时还能够保证命令执行的成功率. 看到这里你不禁要问redis中不是有事务操作么?事务操作不能够实现上面的功能么? 的确,redis中的事务可以watch可以监控数据,从而能够保证连贯执行的时数据的一致性,但是我们必须清楚的认识到,在多个客户端同时处理相同的数据的时候,很容易导致事务的执行失败,甚至会导致数据的出错. 在关系型数据库中,用户首先向数

  • 详解使用Redis SETNX 命令实现分布式锁

    使用Redis的 SETNX 命令可以实现分布式锁,下文介绍其实现方法. SETNX命令简介 命令格式 SETNX key value 将 key 的值设为 value,当且仅当 key 不存在. 若给定的 key 已经存在,则 SETNX 不做任何动作. SETNX 是SET if Not eXists的简写. 返回值 返回整数,具体为 - 1,当 key 的值被设置 - 0,当 key 的值没被设置 例子 redis> SETNX mykey "hello" (integer

  • 详解一种用django_cache实现分布式锁的方式

    问题背景 在项目开发过程中,我遇到一个需求:对于某条记录,一个用户对它进行操作时会持续比较久,希望在一个用户的操作期间,不允许有另一个用户操作它,否容易会出现混乱. 在与同事们讨论后,想通过加锁的方式,起初想用redis锁,但这样会为项目增加别的依赖,因此转而使用django-cache的缓存数据库,来实现该功能. 资料查找 基于缓存实现分布式锁,在网络上查找了实现方式,大概可以总结为以下3种: 第一种锁命令INCR 这种加锁的思路是, key 不存在,那么 key 的值会先被初始化为 0 ,然

  • 详解基于redis实现分布式锁

    前言 为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 原理剖析 上述三种分布式锁都是通过各自为依据对各个请求进行上锁,解锁从而控制放行还是拒绝.redis锁是基于其提供的setnx命令. setnx当且仅当key不存在.若给定key已经存在,则setnx不做任何动作.setnx是一个原子

  • 详解Scrapy Redis入门实战

    简介 scrapy-redis是一个基于redis的scrapy组件,用于快速实现scrapy项目的分布式部署和数据爬取,其运行原理如下图所示. Scrapy-Redis特性 分布式爬取 你可以启动多个共享同一redis队列的爬虫实例,多个爬虫实例将各自提取到或者已请求的Requests在队列中统一进行登记,使得Scheduler在请求调度时能够对重复Requests进行过滤,即保证已经由某一个爬虫实例请求过的Request将不会再被其他的爬虫实例重复请求. 分布式数据处理 将scrapy爬取到

  • 详解基于redis实现的四种常见的限流策略

    目录 一.引言 二.固定时间窗口算法 三.滑动时间窗口算法 四.漏桶算法 五.令牌桶算法 一.引言 在web开发中功能是基石,除了功能以外运维和防护就是重头菜了.因为在网站运行期间可能会因为突然的访问量导致业务异常.也有可能遭受别人恶意攻击 所以我们的接口需要对流量进行限制.俗称的QPS也是对流量的一种描述 针对限流现在大多应该是令牌桶算法,因为它能保证更多的吞吐量.除了令牌桶算法还有他的前身漏桶算法和简单的计数算法 下面我们来看看这四种算法 二.固定时间窗口算法 固定时间窗口算法也可以叫做简单

  • 详解Linux上svn命令行批量操作

    详解Linux上svn命令行批量操作 虽然说git很好,大多数时候我也是使用git,但是有时候因为一些原因,不得不使用svn,而在linux上使用svn是没有像windows上的tortoisesvn的软件的(网上有说有类似的,但是折腾了很久仍然没有成功),所以直接来命令行吧. 我们直接安装svn就好,然后文件修改之后使用命令 svn status 查看文件的跟踪信息,这里会使用一些代号,对应的大概是 " " 无修改 "A" 新增 "C" 冲突

  • 详解adb shell 常用命令

    一.文件操作相关命令 1.文件操作命令 子命令 参数 说明 cd 无 进入目录 cat [-beflnstuv] [-B bsize] [file...] 查看文件内容 -n:显示行号 -b:显示行号,但会忽略空行 -s:显示行号,连续空行标记为一行 df 无 列出分区列表 du [-H] [-L] [-P] [-a] [-d depth] [-s] [-cghikmnrx] [file...] 查询文件或目录的磁盘使用空间 ls [-a] [-i] [-l] [-n] [-s] 列出目录内容

  • 详解SpringBoot Redis自适应配置(Cluster Standalone Sentinel)

    核心代码段 提供一个JedisConnectionFactory  根据配置来判断 单点 集群 还是哨兵 @Bean @ConditionalOnMissingBean public JedisConnectionFactory jedisConnectionFactory() { JedisConnectionFactory factory = null; String[] split = node.split(","); Set<HostAndPort> nodes =

  • 详解Linux使用ss命令结合zabbix对socket做监控

    前言 这里我们使用zabbix对其进行监控,使用的是ss命令,不使用netstat命令,因为ss的速度快很多,不信的话可以去测一下哈,一台机器的socket越多,对比越明显.而且ss命令能显示更多的内容,其实我对这两个命令不是特别的熟悉,通过man ss可以看到: 一.ss命令 ss命令用于显示socket状态. 他可以显示PACKET sockets, TCP sockets, UDP sockets, DCCP sockets, RAW sockets, Unix domain socket

  • 详解Java redis中缓存穿透 缓存击穿 雪崩三种现象以及解决方法

    目录 前言 一.缓存穿透 二.缓存击穿 三.雪崩现象 总结 前言 本文主要阐述redis中的三种现象 1.缓存穿透 2.缓存击穿 3.雪崩现象 本文主要说明本人对三种情况的理解,如果需要知道redis基础请查看其他博客,加油! 一.缓存穿透 理解:何为缓存穿透,先要了解穿透,这样有助于区分穿透和击穿,穿透就类似于伤害一点一点的累计,最终打到穿透的目的,类似于射手,一下一下普通攻击,最终杀死对方,先上图 先来描述一下缓存穿透的过程: 1.由于我们取数据的原则是先查询redis上,如果redis上有

随机推荐