Python正则表达式完全指南

正则表达式处理文本有如疾风扫秋叶,绝大部分编程语言都内置支持正则表达式,它应用在诸如表单验证、文本提取、替换等场景。爬虫系统更是离不开正则表达式,用好正则表达式往往能收到事半功倍的效果。

介绍正则表达式前,先来看一个问题,下面这段文本来自豆瓣的某个网页链接,我对内容进行了缩减。问:如何提取文本中所有邮箱地址呢?

html = """
  <style>
   .qrcode-app{
    display: block;
    background: url(/pics/qrcode_app4@2x.png) no-repeat;
   }
  </style>
  <div class="reply-doc content">
   <p class="">34613453@qq.com,谢谢了</p>
   <p class="">30604259@qq.com麻烦楼主</p>
  </div>
  <p class="">490010464@163.com<br/>谢谢</p>
  """

如果你还没接触过正则表达式,我想对此会是一筹莫展,不用正则,似乎想不到一种更好的方式来处理,不过,我们暂且放下这个问题,待学习完正则表达式之后再来考虑如何解决。

字符串的表现形式

Python 字符串有几种表现形式,以u开头的字符串称为Unicode字符串,它不在本文讨论范围内,此外,你应该还看到过这两种写法:

>>> foo = "hello"
>>> bar = r"hello"

前者是常规字符串,后者 r 开头的是原始字符串,两者有什么区别?因为在上面的例子中,它们都是由普通文本字符组成的串,在这里没什么区别,下面可以证明

>>> foo is bar
True
>>> foo == bar
True

但是,如果字符串中包括有特殊字符,会是什么情况呢?再来看一个例子:

>>> foo = "\n"
>>> bar = r"\n"
>>> foo, len(foo)
('\n', 1)
>>> bar, len(bar)
('\\n', 2)
>>> foo == bar
False
>>>

"\n" 是一个转义字符,它在 ASCII 中表示换行符。而 r"\n" 是一个原始字符串,原始字符串不对特殊字符进行转义,它就是你看到的字面意思,由 "\" 和 "n" 两个字符组成的字符串。

定义原始字符串可以用小写r或者大写R开头,比如 r"\b" 或者 R"\b" 都是允许的。在 Python 中,正则表达式一般用原始字符串的形式来定义,为什么呢?

举例来说,对于字符 "\b" 来说,它在 ASCII 中是有特殊意义的,表示退格键,而在正则表达式中,它是一个特殊的元字符,用于匹配一个单词的边界,为了能让正则编译器正确地表达它的意义就需要用原始字符串,当然也可以使用反斜杠 "\" 对常规定义的字符串进行转义

>>> foo = "\\b"
>>> bar = r"\b"
>>> foo == bar
True

正则基本介绍

正则表达式由普通文本字符和特殊字符(元字符)两种字符组成。元字符在正则表达式中具有特殊意义,它让正则表达式具有更丰富的表达能力。例如,正则表达式 r"a.d"中 ,字符 'a' 和 'd' 是普通字符,'.' 是元字符,. 可以指代任意字符,它能匹配 'a1d'、'a2d'、'acd' ,它的匹配流程是:

Python 内置模块 re 是专门用于处理正则表达式的模块。

>>> rex = r"a.d" # 正则表达式文本
>>> original_str = "and" # 原始文本
>>> pattern = re.compile(rex) # 正则表达式对象
>>> m = pattern.match(original_str) # 匹配对象
>>> m
<_sre.SRE_Match object at 0x101c85b28>
# 等价于
>>> re.match(r"a.d", "and")
<_sre.SRE_Match object at 0x10a15dcc8>

如果原文本字符串与正则表达式匹配,那么就会返回一个 Match 对象,当不匹配时,match 方法返回的 None,通过判断m是否为None可进行表单验证。

接下来,我们需要学习更多元字符。

基本元字符

.:匹配除换行符以外的任意一个字符,例如:"a.c" 可以完全匹配 "abc",也可以匹配 "abcef" 中的 "abc"
\: 转义字符,使特殊字符具有本来的意义,例如: 1\.2 可以匹配 1.2
[...]:匹配方括号中的任意一个字符,例如:a[bcd]e 可以匹配 abe、ace、ade,它还支持范围操作,比如:a到z可表示为 "a-z",0到9可表示为 "0-9",注意,在 "[]" 中的特殊字符不再有特殊意义,就是它字面的意义,例如:[.*]就是匹配 . 或者 *
[^...],字符集取反,表示只要不是括号中出现的字符都可以匹配,例如:a[^bcd]e 可匹配 aee、afe等

>>> re.match(r"a.c", "abc").group()
'abc'
>>> re.match(r"a.c", "abcef").group()
'abc'
>>> re.match(r"1\.2", "1.2").group()
'1.2'
>>> re.match(r"a[0-9]b", "a2b").group()
'a2b'
>>> re.match(r"a[0-9]b", "a5b11").group()
'a5b'
>>> re.match(r"a[.*?]b", "a.b").group()
'a.b'
>>> re.match(r"abc[^\w]", "abc!123").group()
'abc!

group 方法返回原字符串(abcef)中与正则表达式相匹配的那部分子字符串(abc),提前是要匹配成功 match 方法才会返回 Match 对象,进而才有group方法。

预设元字符

\w 匹配任意一个单词字符,包括数字和下划线,它等价于 [A-Za-z0-9_],例如 a\wc 可以匹配 abc、acc
\W 匹配任意一个非单词字符,与 \w 操作相反,它等价于 [^A-Za-z0-9_],例如: a\Wc 可匹配 a!c
\s 匹配任意一个空白字符,空格、回车等都是空白字符,例如:a\sc 可以配 a\nc,这里的 \n表示回车
\S 匹配任意一个非空白字符
\d 匹配任意一个数字,它等价于[0-9],例如:a\dc 可匹配 a1c、a2c ...
\D 匹配任意一个非数字

边界匹配

边界匹配相关的符号专门用于修饰字符。

^ 匹配字符的开头,在字符串的前面,例如:^abc 表示匹配 a开头,后面紧随bc的字符串,它可以匹配 abc
$ 匹配字符的结尾,在字符串的末尾位置,例如: hello$
>>> re.match(r"^abc","abc").group()
'abc'
>>> re.match(r"^abc$","abc").group()
'abc'

重复匹配

前面的元字符都是针对单个字符来匹配的,如果希望匹配的字符重复出现,比如匹配身份证号码,长度18位,那么就需要用到重复匹配的元字符

* 重复匹配零次或者更多次
? 重复匹配零次或者一次
+ 重复匹配1次或者多次
{n} 重复匹配n次
{n,} 重复匹配至少n次
{n, m} 重复匹配n到m次

# 简单匹配身份证号码,前面17位是数字,最后一位可以是数字或者字母X
>>> re.match(r"\d{17}[\dX]", "42350119900101153X").group()
'42350119900101153X'
# 匹配5到12的QQ号码
>>> re.match(r"\d{5,12}$", "4235011990").group()
'4235011990'

逻辑分支

匹配一个固定电话号码,不同地区规则不一样,有的地方区号是3位,电话是8位,有的地方区号是4位,电话为7位,区号与号码之间用 - 隔开,如果应对这样的需求呢?这时你需要用到逻辑分支条件字符 |,它把表达式分为左右两部分,先尝试匹配左边部分,如果匹配成功就不再匹配后面部分了,这是逻辑 "或" 的关系

# abc|cde 可以匹配abc 或者 cde,但优先匹配abc
>>> re.match(r"aa(abc|cde)","aaabccde").group()
'aaabc'
0\d{2}-\d{8}|0\d{3}-\d{7} 表达式以0开头,既可以匹配3位区号8位号码,也可以匹配4位区号7位号码
>>> re.match(r"0\d{2}-\d{8}|0\d{3}-\d{7}", "0755-4348767").group()
'0755-4348767'
>>> re.match(r"0\d{2}-\d{8}|0\d{3}-\d{7}", "010-34827637").group()
'010-34827637'

分组

前面介绍的匹配规则都是针对单个字符而言的,如果想要重复匹配多个字符怎么办,答案是,用子表达式(也叫分组)来表示,分组用小括号"()"表示,例如 (abc){2} 表示匹配abc两次, 匹配一个IP地址时,可以使用 (\d{1,3}\.){3}\d{1,3},因为IP是由4组数组3个点组成的,所有,前面3组数字和3个点可以作为一个分组重复3次,最后一部分是一个1到3个数字组成的字符串。如:192.168.0.1。

关于分组,group 方法可用于提取匹配的字符串分组,默认它会把整个表达式的匹配结果当做第0个分组,就是不带参数的 group() 或者是 group(0),第一组括号中的分组用group(1)获取,以此类推

>>> m = re.match(r"(\d+)(\w+)", "123abc")
#分组0,匹配整个正则表达式
>>> m.group()
'123abc'
#等价
>>> m.group(0)
'123abc'
# 分组1,匹配第一对括号
>>> m.group(1)
'123'
# 分组2,匹配第二对括号
>>> m.group(2)
'abc'
>>>

通过分组,我们可以从字符串中提取出想要的信息。另外,分组还可以通过指定名字的方式获取。

# 第一个分组的名字是number
# 第二个分组的名字是char
>>> m = re.match(r"(?P<number>\d+)(?P<char>\w+)", "123abc")
>>> m.group("number")
'123'
# 等价
>>> m.group(1)
'123'

贪婪与非贪婪

默认情况下,正则表达式重复匹配时,在使整个表达式能得到匹配的前提下尽可能匹配多的字符,我们称之为贪婪模式,是一种贪得无厌的模式。例如: r"a.*b" 表示匹配 a 开头 b 结尾,中间可以是任意多个字符的字符串,如果用它来匹配 aaabcb,那么它会匹配整个字符串。

>>> re.match(r"a.*b", "aaabcb").group()
'aaabcb'

有时,我们希望尽可能少的匹配,怎么办?只需要在量词后面加一个问号" ?",在保证匹配的情况下尽可能少的匹配,比如刚才的例子,我们只希望匹配 aaab,那么只需要修改正则表达式为 r"a.*?b"

>>> re.match(r"a.*?b", "aaabcb").group()
'aaab'
>>>

非贪婪模式在爬虫应用中使用非常频繁。比如之前在公众号「Python之禅」曾写过一篇爬取网站并将其转换为PDF文件的场景,在网页上涉及img标签元素是相对路径的情况,我们需要把它替换成绝对路径

>>> html = '<img src="/images/category.png"><img src="/images/js_framework.png">'
# 非贪婪模式就匹配的两个img标签
# 你可以改成贪婪模式看看可以匹配几个
>>> rex = r'<img.*?src="(.*?)">'
>>> re.findall(rex, html)
['/images/category.png', '/images/js_framework.png']
>>>
>>> def fun(match):
...  img_tag = match.group()
...  src = match.group(1)
...  full_src = "http://foofish.net" + src
...  new_img_tag = img_tag.replace(src, full_src)
...  return new_img_tag
...
>>> re.sub(rex, fun, html)
<img src="http://foofish.net/images/category.png"><img src="http://foofish.net/images/js_framework.png">

sub 函数可以接受一个函数作为替换目标对象,函数返回值用来替换正则表达式匹配的部分,在这里,我把整个img标签定义为一个正则表达式 r'<img.*?src="(.*?)">',group() 返回的值是 <img src="/images/category.png">,而 group(1) 的返回值是 /images/category.png,最后,我用 replace 方法把相对路径替换成绝对路径。

到此,你应该对正则表达式有了初步的了解,现在我想你应该能解决文章开篇提的问题了。

正则表达式的基本介绍也到这里告一段落,虽然代码示例中用了re模块中的很多方法,但我还没正式介绍该模块,考虑到文章篇幅,我把这部分放在下篇,下篇将对re的常用方法进行介绍。

以上所述是小编给大家介绍的Python正则表达式完全指南,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • python利用正则表达式提取字符串

    前言 正则表达式的基础知识就不说了,有兴趣的可以点击这里,提取一般分两种情况,一种是提取在文本中提取单个位置的字符串,另一种是提取连续多个位置的字符串.日志分析会遇到这种情况,下面我会分别讲一下对应的方法. 一.单个位置的字符串提取 这种情况我们可以使用(.+?)这个正则表达式来提取. 举例,一个字符串"a123b",如果我们想提取ab之间的值123,可以使用findall配合正则表达式,这样会返回一个包含所以符合情况的list. 代码如下: import re str = "

  • Python使用中文正则表达式匹配指定中文字符串的方法示例

    本文实例讲述了Python使用中文正则表达式匹配指定中文字符串的方法.分享给大家供大家参考,具体如下: 业务场景: 从中文字句中匹配出指定的中文子字符串 .这样的情况我在工作中遇到非常多, 特梳理总结如下. 难点: 处理GBK和utf8之类的字符编码, 同时正则匹配Pattern中包含汉字,要汉字正常发挥作用,必须非常谨慎.推荐最好统一为utf8编码,如果不是这种最优情况,也有酌情处理. 往往一个具有普适性的正则表达式会简化程序和代码的处理,使过程简洁和事半功倍,这往往是高手和菜鸟最显著的差别.

  • Python正则表达式如何进行字符串替换实例

    Python正则表达式在使用中会经常应用到字符串替换的代码.有很多人都不知道如何解决这个问题,下面的代码就告诉你其实这个问题无比的简单,希望你有所收获. 1.替换所有匹配的子串用newstring替换subject中所有与正则表达式regex匹配的子串 result, number = re.subn(regex, newstring, subject) 2.替换所有匹配的子串(使 用正则表达式对象) rereobj = re.compile(regex) result, number = re

  • Python 正则表达式入门(初级篇)

    引子 首先说 正则表达式是什么? 正则表达式,又称正规表示式.正规表示法.正规表达式.规则表达式.常规表示法(英语:Regular Expression,在代码中常简写为regex.regexp或RE),计算机科学的一个概念.正则表达式使用单个字符串来描述.匹配一系列匹配某个句法规则的字符串.在很多文本编辑器里,正则表达式通常被用来检索.替换那些匹配某个模式的文本. 许多程序设计语言都支持利用正则表达式进行字符串操作.例如,在Perl中就内建了一个功能强大的正则表达式引擎.正则表达式这个概念最初

  • Python正则表达式实现截取成对括号的方法

    本文实例讲述了Python正则表达式实现截取成对括号的方法.分享给大家供大家参考,具体如下: strs = '1(2(3(4(5(67)6)7)8)9)0' reg1 = re.compile('([()])∗') #一对括号 reg2 = re.compile('([()]|\([()]∗)*\)') #两对括号 reg3 = re.compile('([()]|\([()]∗|([()]|\([()]∗)*\))*\)') #三层 函数 #匹配成对括号正则表达式 def getReg(sel

  • Python正则表达式匹配中文用法示例

    本文实例讲述了Python正则表达式匹配中文用法.分享给大家供大家参考,具体如下: #!/usr/bin/python #-*- coding:cp936-*-#思路,将str转换成unicode,方可用正则表达式,前提是,要知道文件的编码,本例中是gbk import cPickle as mypickle import re import sys if (__name__=='__main__'): fid1=file('demo.txt','r');#demo.txt写入字符如:我们 p=

  • Python正则表达式完全指南

    正则表达式处理文本有如疾风扫秋叶,绝大部分编程语言都内置支持正则表达式,它应用在诸如表单验证.文本提取.替换等场景.爬虫系统更是离不开正则表达式,用好正则表达式往往能收到事半功倍的效果. 介绍正则表达式前,先来看一个问题,下面这段文本来自豆瓣的某个网页链接,我对内容进行了缩减.问:如何提取文本中所有邮箱地址呢? html = """ <style> .qrcode-app{ display: block; background: url(/pics/qrcode_

  • python正则表达式实例代码

    re 模块使 Python 语言拥有全部的正则表达式功能. 会用到的语法 正则字符 释义 举例 + 前面元素至少出现一次 ab+:ab.abbbb 等 * 前面元素出现0次或多次 ab*:a.ab.abb 等 ? 匹配前面的一次或0次 Ab?: A.Ab 等 ^ 作为开始标记 ^a:abc.aaaaaa等 $ 作为结束标记 c$:abc.cccc 等 \d 数字 3.4.9 等 正则字符 释义 举例 + 前面元素至少出现一次 ab+:ab.abbbb 等 * 前面元素出现0次或多次 ab*:a.

  • python正则表达式re之compile函数解析

    re正则表达式模块还包括一些有用的操作正则表达式的函数.下面主要介绍compile函数. 定义: compile(pattern[,flags] ) 根据包含正则表达式的字符串创建模式对象. 通过python的help函数查看compile含义: help(re.compile) compile(pattern, flags=0) Compile a regular expression pattern, returning a pattern object. 通过help可以看到compile

  • 基于Python正则表达式提取搜索结果中的站点地址

    正则表达式对于Python来说并不是独有的,最近在把google搜索的结果中所有的站点地址导出,于是想到用python正则表达式提取搜索结果中的站点地址. 这其中涉及几个需要解决的问题: 1.获取搜索的结果文本 为了获得更多的地址,我使用了Google的高级搜索功能,每个页面显示100条结果. 获得显示的结果后,可以查看源码,并保持成文本文件就有了搜索的结果文本 2.分析如何提取站点信息 首先需要分析获取的页面,查看以怎样的方式可以提取出站点信息. 我使用IE8自带的开发工具(按F12就会弹出来

  • Python正则表达式教程之一:基础篇

    前言 之前有人提了一个需求,我一看此需求用正则表达式最合适不过.考虑到之前每次使用正则表达式,都是临时抱佛脚,于是这次我就一边完成任务一边系统的学习了一遍正则表达式.主要参考PyCon2016上的一个视频Regular Expressions. 我将分几篇文章对正则表达式进行总结. 以下是第一部分,基础:  基础部分 这里总结了正则表达式最基础的用法,其中大部分内容对我(以及大部分程序员)来说都是平时经常用到的,所以我就一笔带过了,只对其中的几处用例子说明. .           除了换行之外

  • Python正则表达式的七个使用范例详解

    作为一个概念而言,正则表达式对于Python来说并不是独有的.但是,Python中的正则表达式在实际使用过程中还是有一些细小的差别. 本文是一系列关于Python正则表达式文章的其中一部分.在这个系列的第一篇文章中,我们将重点讨论如何使用Python中的正则表达式并突出Python中一些独有的特性. 我们将介绍Python中对字符串进行搜索和查找的一些方法.然后我们讲讨论如何使用分组来处理我们查找到的匹配对象的子项. 我们有兴趣使用的Python中正则表达式的模块通常叫做're'. >>>

  • Python正则表达式常用函数总结

    本文实例总结了Python正则表达式常用函数.分享给大家供大家参考,具体如下: re.match() 函数原型: match(pattern, string, flags=0)     Try to apply the pattern at the start of the string,      returning a match object, or None if no match was found. 函数作用: re.match函数尝试从字符串的开头开始匹配一个模式,如果匹配成功,返

  • Python正则表达式知识汇总

    1. 正则表达式语法 1.1 字符与字符类   1 特殊字符:\.^$?+*{}[]()| 以上特殊字符要想使用字面值,必须使用\进行转义   2 字符类      1. 包含在[]中的一个或者多个字符被称为字符类,字符类在匹配时如果没有指定量词则只会匹配其中的一个.   2. 字符类内可以指定范围,比如[a-zA-Z0-9]表示a到z,A到Z,0到9之间的任何一个字符   3. 左方括号后跟随一个^,表示否定一个字符类,比如[^0-9]表示可以匹配一个任意非数字的字符.   4. 字符类内部,

  • Python正则表达式非贪婪、多行匹配功能示例

    本文实例讲述了Python正则表达式非贪婪.多行匹配功能.分享给大家供大家参考,具体如下: 一些regular的tips: 1 非贪婪flag >>> re.findall(r"a(\d+?)","a23b") # 非贪婪模式 ['2'] >>> re.findall(r"a(\d+)","a23b") ['23'] 注意比较这种情况: >>> re.findall(r&q

  • Python正则表达式使用范例分享

    作为一个概念而言,正则表达式对于Python来说并不是独有的.但是,Python中的正则表达式在实际使用过程中还是有一些细小的差别. 本文是一系列关于Python正则表达式文章的其中一部分.在这个系列的第一篇文章中,我们将重点讨论如何使用Python中的正则表达式并突出Python中一些独有的特性. 我们将介绍Python中对字符串进行搜索和查找的一些方法.然后我们讲讨论如何使用分组来处理我们查找到的匹配对象的子项. 我们有兴趣使用的Python中正则表达式的模块通常叫做're'. >>>

随机推荐