python基于mysql实现的简单队列以及跨进程锁实例详解

通常在我们进行多进程应用开发的过程中,不可避免的会遇到多个进程访问同一个资源(临界资源)的状况,这时候必须通过加一个全局性的锁,来实现资源的同步访问(即:同一时间里只能有一个进程访问资源)。

举个例子如下:

假设我们用mysql来实现一个任务队列,实现的过程如下:

1. 在Mysql中创建Job表,用于储存队列任务,如下:

create table jobs(
  id auto_increment not null primary key,
  message text not null,
  job_status not null default 0
);

message 用来存储任务信息,job_status用来标识任务状态,假设只有两种状态,0:在队列中, 1:已出队列 
 
2. 有一个生产者进程,往job表中放新的数据,进行排队:

insert into jobs(message) values('msg1');

3.假设有多个消费者进程,从job表中取排队信息,要做的操作如下:

select * from jobs where job_status=0 order by id asc limit 1;
update jobs set job_status=1 where id = ?; -- id为刚刚取得的记录id

4. 如果没有跨进程的锁,两个消费者进程有可能同时取到重复的消息,导致一个消息被消费多次。这种情况是我们不希望看到的,于是,我们需要实现一个跨进程的锁。

=========================分割线=======================================

说到跨进程的锁实现,我们主要有几种实现方式:

(1)信号量
(2)文件锁fcntl
(3)socket(端口号绑定)
(4)signal
这几种方式各有利弊,总体来说前2种方式可能多一点,这里我就不详细说了,大家可以去查阅资料。
 
查资料的时候发现mysql中有锁的实现,适用于对于性能要求不是很高的应用场景,大并发的分布式访问可能会有瓶颈.
 
对此用python实现了一个demo,如下:
 
文件名:glock.py

#!/usr/bin/env python2.7
#
# -*- coding:utf-8 -*-
#
#  Desc  :
#
import logging, time
import MySQLdb
class Glock:
  def __init__(self, db):
    self.db = db
  def _execute(self, sql):
    cursor = self.db.cursor()
    try:
      ret = None
      cursor.execute(sql)
      if cursor.rowcount != 1:
        logging.error("Multiple rows returned in mysql lock function.")
        ret = None
      else:
        ret = cursor.fetchone()
      cursor.close()
      return ret
    except Exception, ex:
      logging.error("Execute sql \"%s\" failed! Exception: %s", sql, str(ex))
      cursor.close()
      return None
  def lock(self, lockstr, timeout):
    sql = "SELECT GET_LOCK('%s', %s)" % (lockstr, timeout)
    ret = self._execute(sql) 

    if ret[0] == 0:
      logging.debug("Another client has previously locked '%s'.", lockstr)
      return False
    elif ret[0] == 1:
      logging.debug("The lock '%s' was obtained successfully.", lockstr)
      return True
    else:
      logging.error("Error occurred!")
      return None
  def unlock(self, lockstr):
    sql = "SELECT RELEASE_LOCK('%s')" % (lockstr)
    ret = self._execute(sql)
    if ret[0] == 0:
      logging.debug("The lock '%s' the lock is not released(the lock was not established by this thread).", lockstr)
      return False
    elif ret[0] == 1:
      logging.debug("The lock '%s' the lock was released.", lockstr)
      return True
    else:
      logging.error("The lock '%s' did not exist.", lockstr)
      return None
#Init logging
def init_logging():
  sh = logging.StreamHandler()
  logger = logging.getLogger()
  logger.setLevel(logging.DEBUG)
  formatter = logging.Formatter('%(asctime)s -%(module)s:%(filename)s-L%(lineno)d-%(levelname)s: %(message)s')
  sh.setFormatter(formatter)
  logger.addHandler(sh)
  logging.info("Current log level is : %s",logging.getLevelName(logger.getEffectiveLevel()))
def main():
  init_logging()
  db = MySQLdb.connect(host='localhost', user='root', passwd='')
  lock_name = 'queue' 

  l = Glock(db) 

  ret = l.lock(lock_name, 10)
  if ret != True:
    logging.error("Can't get lock! exit!")
    quit()
  time.sleep(10)
  logging.info("You can do some synchronization work across processes!")
  ##TODO
  ## you can do something in here ##
  l.unlock(lock_name)
if __name__ == "__main__":
  main()

在main函数里:

l.lock(lock_name, 10) 中,10是表示timeout的时间是10秒,如果10秒还获取不了锁,就返回,执行后面的操作。
 
在这个demo中,在标记TODO的地方,可以将消费者从job表中取消息的逻辑放在这里。即分割线以上的.

2.假设有多个消费者进程,从job表中取排队信息,要做的操作如下:

select * from jobs where job_status=0 order by id asc limit 1;
update jobs set job_status=1 where id = ?; -- id为刚刚取得的记录id

这样,就能保证多个进程访问临界资源时同步进行了,保证数据的一致性。
 
测试的时候,启动两个glock.py, 结果如下:

[@tj-10-47 test]# ./glock.py
2014-03-14 17:08:40,277 -glock:glock.py-L70-INFO: Current log level is : DEBUG
2014-03-14 17:08:40,299 -glock:glock.py-L43-DEBUG: The lock 'queue' was obtained successfully.
2014-03-14 17:08:50,299 -glock:glock.py-L81-INFO: You can do some synchronization work across processes!
2014-03-14 17:08:50,299 -glock:glock.py-L56-DEBUG: The lock 'queue' the lock was released.

可以看到第一个glock.py是 17:08:50解锁的,下面的glock.py是在17:08:50获取锁的,可以证实这样是完全可行的。

[@tj-10-47 test]# ./glock.py
2014-03-14 17:08:46,873 -glock:glock.py-L70-INFO: Current log level is : DEBUG
2014-03-14 17:08:50,299 -glock:glock.py-L43-DEBUG: The lock 'queue' was obtained successfully.
2014-03-14 17:09:00,299 -glock:glock.py-L81-INFO: You can do some synchronization work across processes!
2014-03-14 17:09:00,300 -glock:glock.py-L56-DEBUG: The lock 'queue' the lock was released.
[@tj-10-47 test]#
(0)

相关推荐

  • Python算法应用实战之队列详解

    队列(queue) 队列是先进先出(FIFO, First-In-First-Out)的线性表,在具体应用中通常用链表或者数组来实现,队列只允许在后端(称为rear)进行插入操作,在前端(称为front)进行删除操作,队列的操作方式和堆栈类似,唯一的区别在于队列只允许新数据在后端进行添加(摘录维基百科). 如图所示 队列的接口 一个队列至少需要如下接口: 接口 描述 add(x) 入队 delete() 出队 clear() 清空队列 isEmpty() 判断队列是否为空 isFull() 判断

  • Python3中多线程编程的队列运作示例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue): super().__init__() # 必须调用 self.

  • Python实现的数据结构与算法之队列详解

    本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操作在队首(front)进行. 二.ADT 队列ADT(抽象数据类型)一般提供以下接口: ① Queue() 创建队列 ② enqueue(item) 向队尾插入项 ③ dequeue() 返回队首的项,并从队列中删除该项 ④ empty() 判断队列是否为空 ⑤ size() 返回队列中项的个数 队

  • Python实现简单多线程任务队列

    最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题.梯度下降算法的代码如下(伪代码): def gradient_descent(): # the gradient descent code plotly.write(X, Y) 一般来说,当网络请求 plot.ly 绘图时会阻塞等待返回,于是也会影响到其他的梯度下降函数的执行速度. 一种解决办法是每调用一次 plotly.write 函数就开启一个新的线程,但是这种方法感觉不是很好. 我不想用一个像 cerely(一种分布式任

  • Python多线程和队列操作实例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 复制代码 代码如下: #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue):         super().__in

  • python计算最大优先级队列实例

    复制代码 代码如下: # -*- coding: utf-8 -*- class Heap(object): @classmethod    def parent(cls, i):        """父结点下标"""        return int((i - 1) >> 1); @classmethod    def left(cls, i):        """左儿子下标""

  • python异步任务队列示例

    很多场景为了不阻塞,都需要异步回调机制.这是一个简单的例子,大家参考使用吧 复制代码 代码如下: #!/usr/bin/env python# -*- coding: UTF-8 -*- import loggingimport queueimport threading def func_a(a, b):    return a + b def func_b():    pass def func_c(a, b, c):    return a, b, c # 异步任务队列_task_queu

  • Python中线程的MQ消息队列实现以及消息队列的优点解析

    "消息队列"是在消息的传输过程中保存消息的容器.消息队列管理器在将消息从它的源中继到它的目标时充当中间人.队列的主要目的是提供路由并保证消息的传递:如果发送消息时接收者不可用,消息队列会保留消息,直到可以成功地传递它.相信对任何架构或应用来说,消息队列都是一个至关重要的组件,下面是十个理由: Python的消息队列示例: 1.threading+Queue实现线程队列 #!/usr/bin/env python import Queue import threading import

  • python实现堆栈与队列的方法

    本文实例讲述了python实现堆栈与队列的方法.分享给大家供大家参考.具体分析如下: 1.python实现堆栈,可先将Stack类写入文件stack.py,在其它程序文件中使用from stack import Stack,然后就可以使用堆栈了. stack.py的程序: 复制代码 代码如下: class Stack():      def __init__(self,size):          self.size=size;          self.stack=[];         

  • 利用Python学习RabbitMQ消息队列

    RabbitMQ可以当做一个消息代理,它的核心原理非常简单:即接收和发送消息,可以把它想象成一个邮局:我们把信件放入邮箱,邮递员就会把信件投递到你的收件人处,RabbitMQ就是一个邮箱.邮局.投递员功能综合体,整个过程就是:邮箱接收信件,邮局转发信件,投递员投递信件到达收件人处. RabbitMQ和邮局的主要区别就是RabbitMQ接收.存储和发送的是二进制数据----消息. rabbitmq基本管理命令: 一步启动Erlang node和Rabbit应用:sudo rabbitmq-serv

随机推荐