Python实现最短路径问题的方法

目录
  • 一、创建图
  • 二、问题来源
  • 三、Dijkstra算法
  • 四、Floyd算法
  • 五、代码测试

一、创建图

在开始之前,我们先创建一个图,使用邻接矩阵表示有向网:

class Graph(object):
    """
    以邻接矩阵为存储结构创建有向网
    """
    def __init__(self, kind):
        # 图的类型: 无向图, 有向图, 无向网, 有向网
        # kind: Undigraph, Digraph, Undinetwork, Dinetwork,
        self.kind = kind
        # 顶点表
        self.vertexs = []
        # 边表, 即邻接矩阵, 是个二维的
        self.arcs = []
        # 当前顶点数
        self.vexnum = 0
        # 当前边(弧)数
        self.arcnum = 0

    def CreateGraph(self, vertex_list, edge_list):
        """
        创建图
        :param vertex_list: 顶点列表
        :param edge_list: 边列表
        :return:
        """
        self.vexnum = len(vertex_list)
        self.arcnum = len(edge_list)
        for vertex in vertex_list:
            vertex = Vertex(vertex)
            # 顶点列表
            self.vertexs.append(vertex)
            # 邻接矩阵, 初始化为无穷
            self.arcs.append([float('inf')] * self.vexnum)
        for edge in edge_list:
            ivertex = self.LocateVertex(edge[0])
            jvertex = self.LocateVertex(edge[1])
            weight = edge[2]
            self.InsertArc(ivertex, jvertex, weight)

    def LocateVertex(self, vertex):
        """
        定位顶点在邻接表中的位置
        :param vertex:
        :return:
        """
        index = 0
        while index < self.vexnum:
            if self.vertexs[index].data == vertex:
                return index
            else:
                index += 1

    def InsertArc(self, ivertex, jvertex, weight):
        """
        创建邻接矩阵
        :param ivertex:
        :param jvertex:
        :param weight:
        :return:
        """
        if self.kind == 'Dinetwork':
            self.arcs[ivertex][jvertex] = weight

  有关邻接矩阵中顶点结点Vertex()的定义可以参考这篇博客,这里就不在贴出相应的代码了。

二、问题来源

  

假如我从城市 A A A出发坐火车去其他城市旅游,那么如何规划路线使所花费的车票钱最少呢?若将上述图中的城市看成有向网中的顶点,并将两城市之间所需要的车票钱看做对应弧的权值,那么这一问题的本质就是求两个顶点之间权值最小的路径,简称最短路径 ( S h o r t e s t (Shortest (Shortest P a t h ) Path) Path)。

三、Dijkstra算法

D i j k s t r a Dijkstra Dijkstra算法,中文名叫迪杰斯特拉算法,它常用于求解源点到其余顶点的最短路径。

假设 G = { V , { A } } G=\{V, \{A\}\} G={V,{A}}是含有 n n n个顶点的有向网,以该图中的顶点 v v v为源点,使用 D i j k s t r a

Dijkstra Dijkstra算法求顶点 v v v到图中其余各顶点的最短路径的基本思路如下:
(1) 使用集合 S S S记录已求得最短路径的终点,初始时 S = { v } S=\{v\} S={v};
(2) 选择一条长度最短的路径,该路径的终点 w ∈ V − S w\in V-S w∈V−S,将 w w w并入 S S S,并将该最短路径的长度记为 D w D_w Dw​;
(3) 对于 V − S V-S V−S中任一顶点 s s s,将源点到顶点 s s s的最短路径长度记为 D s D_s Ds​,并将顶点 w w w到顶点 s s s的弧的权值记为 D w s D_{ws} Dws​,若 D w + D w s < D s D_w+D_{ws}<D_s Dw​+Dws​<Ds​,则将源点到顶点 s s s的最短路径的长度修改为 D w + D w s D_w+D_{ws} Dw​+Dws​;
(4) 重复执行上述操作,直到 S = V S=V S=V。

D i j k s t r a Dijkstra Dijkstra算法有些 P r i m Prim Prim算法的影子,这里使用一个辅助列表Dist,用来存储源点到每一个终点的最短路径长度,列表Path来存储每一条最短路径中倒数第二个顶点的下标(弧尾下标),除此之外还需要一个列表flag来记录顶点是否已求得最短路径。下面结合着 D i j k s t r a Dijkstra Dijkstra算法来分析一下上面的那个有向网:

(1) 这里要做的就是更新列表Dist和列表Path,假如以顶点 A A A为起始点,先将它加入 S S S中,然后寻找以顶点 A A A为弧尾的最短路径,这里找到了顶点 B B B,然后继续找下一个顶点。这个时候就要做一个判断了,即 D w + D w s < D s D_w+D_{ws}<D_s Dw​+Dws​<Ds​是否成立,这里的顶点 s s s有两种选择,要么是顶点 C C C,要么是顶点 D D D,因为这两个顶点都是以顶点 w w w(即顶点 B B B)为弧尾,按照顺序,这个时候先选择了顶点 C C C,经判断: D A B + D B C < D A C D_{AB}+D_{BC}<D_{AC} DAB​+DBC​<DAC​(即 4 + 3 = 7 < 8 4+3=7<8 4+3=7<8)成立,然后更新源点到顶点 s s s(即顶点 C C C)的距离为7。这个时候顶点 s s s又选择了顶点 D D D,经判断: D A B + D B D < D A D D_{AB}+D_{BD}<D_{AD} DAB​+DBD​<DAD​(即 4 + 8 = 12 < ∞ 4+8=12<\infty 4+8=12<∞)成立,然后更新源点到顶点 s s s(即顶点 D D D)的距离为12。

(2) 然后寻找以顶点 C C C为弧尾的最短路径,这里找到了顶点 E E E,然后做一个路径长度判断,经判断: D A C + D C E < D A E D_{AC}+D_{CE}<D_{AE} DAC​+DCE​<DAE​(即 7 + 1 = 8 < ∞ 7+1=8<\infty 7+1=8<∞)成立,然后更新源点到顶点 s s s(即顶点 E E E)的距离为8,然后又找到了顶点 F F F,然后做一个路径长度判断,经判断: D A C + D C F < D A F D_{AC}+D_{CF}<D_{AF} DAC​+DCF​<DAF​(即 7 + 6 = 13 < ∞ 7+6=13<\infty 7+6=13<∞)成立,然后更新源点到顶点 s s s(即顶点 F F F)的距离为13。

(3) 直至计算出所有源点到其余顶点的距离。

D i j k s t r a Dijkstra Dijkstra算法代码实现如下:

 def Dijkstra(self, Vertex):
        """
        Dijkstra算法, 计算源点Vertex到其余各顶点的最短距离
        :param Vertex:
        :return:
        """
        # 源点到每一个终点的最短路径长度
        Dist = []
        # 每一条最短路径中倒数第二个顶点的下标(弧尾下标)
        Path = []
        # 记录顶点是否已求得最短路径
        flag = [False] * self.vexnum

        index = 0
        while index < self.vexnum:
            Dist.append(self.arcs[Vertex][index])
            if self.arcs[Vertex][index] < float('inf'):
                # 存放弧尾下标
                Path.append(Vertex)
            else:
                Path.append(-1)
            index += 1

        # 以顶点Vertex为源点
        Dist[Vertex] = 0
        Path[Vertex] = 0
        flag[Vertex] = True

        index = 1
        while index < self.vexnum:
            minDist = float('inf')
            # 寻找源点到下一个顶点wVertex的最短路径
            for i in range(self.vexnum):
                if not flag[i] and Dist[i] < minDist:
                    wVertex = i
                    minDist = Dist[i]
            flag[wVertex] = True
            sVertex = 0
            minDist = float('inf')
            # 更新源点到终点sVertex的最短路径
            while sVertex < self.vexnum:
                if not flag[sVertex]:
                    if self.arcs[wVertex][sVertex] < minDist and \
                            Dist[wVertex] + self.arcs[wVertex][sVertex] < Dist[sVertex]:
                        # 距离更新
                        Dist[sVertex] = Dist[wVertex] + self.arcs[wVertex][sVertex]
                        Path[sVertex] = wVertex
                sVertex += 1
            index += 1
        # 输出信息
        self.ShortestPathDijkstra(Vertex, Dist, Path)

    def ShortestPathDijkstra(self, Vertex, Dist, Path):
        """
        输出从顶点Vertex到其余顶点的最短路径
        :param Vertex:
        :param Dist:
        :param Path:
        :return:
        """
        tPath = []
        index = 0
        while index < self.vexnum:
            # index是路径终点
            if index != Vertex:
                print('顶点' + self.vertexs[Vertex].data + '到达顶点' + self.vertexs[index].data + '的路径及长度为:')
                # 从源点Vertex到终点index中间有可能经过了多个顶点
                tPath.append(index)
                former = Path[index]
                while former != Vertex:
                    tPath.append(former)
                    former = Path[former]
                tPath.append(Vertex)
                while len(tPath) > 0:
                    print(self.vertexs[tPath.pop()].data, end='')
                print('\t\t%d' % Dist[index])
            index += 1

四、Floyd算法

F l o y d Floyd Floyd算法,中文名叫弗洛伊德算法,它常用于求解求解每一对顶点之间的最短路径。

假设 G = { V , { A } } G=\{V, \{A\}\} G={V,{A}}是含有 n n n个顶点的有向网,使用 F l o y d Floyd Floyd算法求图中每一对顶点间的最短路径的基本思路如下:

(1) 对于图 G G G中任意两个顶点 v v v和 w w w,将顶点 v v v和顶点 w w w的最短路径的长度记为 D v w D_{vw} Dvw​,并依次判断其余各顶点是否为这两个顶点间最短路径上的顶点。对于除了顶点 v v v和顶点顶点 w w w的任意顶点 u u u,将顶点 v v v和顶点 u u u的最短路径的长度记为 D v u D_{vu} Dvu​,并顶点 u u u和顶点 w w w的最短路径的长度记为 D u w D_{uw} Duw​,若 D v u + D u w < D v w D_{vu}+D_{uw}<D_{vw} Dvu​+Duw​<Dvw​,则将 D v w D_{vw} Dvw​的值修改为 D v u + D u w D_{vu}+D_{uw} Dvu​+Duw​,即顶点 v v v和顶点 w w w的最短路径经过顶点 u u u;

(2) 重复上述过程,直至图中每一顶点间的最短路径都被求出。

当然了,也可以对每个顶点使用 D i j k s t r a Dijkstra Dijkstra算法来求得每对顶点的最短路径。对于 F l o y d Floyd Floyd算法,这里使用一个辅助二维数组Dist,用来存储源点到每一对顶点间的最短路径长度,二维数组Path来存储每一条最短路径中倒数第二个顶点的下标(弧尾下标)。下面结合着 F l o y d Floyd Floyd算法来分析一下最上面的那个有向网(由于顶点对较多,这里选择 A − I A-I A−I的最短路径进行说明):

  

F l o y d Floyd Floyd算法代码实现如下:

 def Floyd(self):
        """
        Floyd算法, 计算每一对顶点间的最短距离
        :return:
        """
        Dist = [[0 for _ in range(self.vexnum)] for _ in range(self.vexnum)]
        Path = [[0 for _ in range(self.vexnum)] for _ in range(self.vexnum)]
        for row in range(self.vexnum):
            for column in range(self.vexnum):
                Dist[row][column] = self.arcs[row][column]
                if self.arcs[row][column] < float('inf') and row != column:
                    Path[row][column] = row
                else:
                    Path[row][column] = -1

        # 判断图中任意两个顶点的最短路径是否经过了结点uVertex
        for uVertex in range(self.vexnum):
            for vVertex in range(self.vexnum):
                for wVertex in range(self.vexnum):
                    if vVertex != wVertex and \
                            Dist[vVertex][uVertex] + Dist[uVertex][wVertex] < Dist[vVertex][wVertex]:
                        Dist[vVertex][wVertex] = Dist[vVertex][uVertex] + Dist[uVertex][wVertex]
                        Path[vVertex][wVertex] = Path[uVertex][wVertex]
        # 输出每一组顶点间的最短路径
        self.ShortestPathFloyd(Dist, Path)

    def ShortestPathFloyd(self, Dist, Path):
        """
        输出每一组顶点间的最短路径
        :param Dist:
        :param Path:
        :return:
        """
        tPath = []
        for start in range(self.vexnum):
            for end in range(self.vexnum):
                if start != end and Dist[start][end] < float('inf'):
                    print('从顶点' + self.vertexs[start].data + '到顶点' + self.vertexs[end].data +
                          '的路径及长度为:')
                    tVertex = Path[start][end]
                    tPath.append(end)
                    while tVertex != -1 and tVertex != start:
                        tPath.append(tVertex)
                        tVertex = Path[start][tVertex]
                    tPath.append(start)
                    while len(tPath) > 0:
                        print(self.vertexs[tPath.pop()].data, end='')
                    print('\t\t%d' % Dist[start][end])

五、代码测试

测试代码如下:

if __name__ == '__main__':
    graph = Graph(kind='Dinetwork')
    graph.CreateGraph(vertex_list=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
                      edge_list=[('A', 'B', 4), ('A', 'C', 8), ('B', 'C', 3), ('B', 'D', 8),
                                 ('C', 'E', 1), ('C', 'F', 6), ('D', 'G', 7), ('D', 'H', 4),
                                 ('E', 'D', 2), ('E', 'F', 6), ('F', 'H', 2), ('G', 'I', 9),
                                 ('H', 'G', 14), ('H', 'I', 10)])

    print('{:*^30}'.format('Dijkstra算法'))
    # 起始位置的index为0
    graph.Dijkstra(0)

    print('{:*^30}'.format('Floyd算法'))
    graph.Floyd()

测试结果如下:


这里只看了一条,就是从顶点 A A A到顶点 I I I的路径,可以看到 D i j k s t r a Dijkstra Dijkstra算法和 F l o y d Floyd Floyd算法求得的最短路径都是24。

到此这篇关于Python实现最短路径问题的方法的文章就介绍到这了,更多相关Python最短路径内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个点到其他各顶点的路径--单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, 3:{3:0, 5:5}, 4:{3:4, 4:0, 5:13, 6:15}, 5:{5:0, 6:4}, 6:{6:0}} # 每次找到离源点最近的一个顶

  • python实现Dijkstra算法的最短路径问题

    迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法. 1 算法原理 迪杰斯特拉(Dijkstra)算法是一个按照路径长度递增的次序产生的最短路径算法.下图为带权值的有向图,作为程序中的实验数据. 其中,带权值的有向图采用邻接矩阵graph来进行存储,在计算中就是采用n*n的二维数组来进行存储,v0-v5表示数组的索引编号0-5,二维数组的值表示节点之间的权值,若两个节点不能通行,比如,v0->v1不能通行,那么graph[0,1]=+∞ (采

  • python Dijkstra算法实现最短路径问题的方法

    本文借鉴于张广河教授主编的<数据结构>,对其中的代码进行了完善. 从某源点到其余各顶点的最短路径 Dijkstra算法可用于求解图中某源点到其余各顶点的最短路径.假设G={V,{E}}是含有n个顶点的有向图,以该图中顶点v为源点,使用Dijkstra算法求顶点v到图中其余各顶点的最短路径的基本思想如下: 使用集合S记录已求得最短路径的终点,初始时S={v}. 选择一条长度最小的最短路径,该路径的终点w属于V-S,将w并入S,并将该最短路径的长度记为Dw. 对于V-S中任一顶点是s,将源点到顶点

  • python编写的最短路径算法

    一心想学习算法,很少去真正静下心来去研究,前几天趁着周末去了解了最短路径的资料,用python写了一个最短路径算法.算法是基于带权无向图去寻找两个点之间的最短路径,数据存储用邻接矩阵记录.首先画出一幅无向图如下,标出各个节点之间的权值. 其中对应索引: A --> 0 B--> 1 C--> 2 D-->3 E--> 4 F--> 5 G--> 6 邻接矩阵表示无向图: 算法思想是通过Dijkstra算法结合自身想法实现的.大致思路是:从起始点开始,搜索周围的路径

  • Python使用Dijkstra算法实现求解图中最短路径距离问题详解

    本文实例讲述了Python使用Dijkstra算法实现求解图中最短路径距离问题.分享给大家供大家参考,具体如下: 这里继续前面一篇<Python基于Floyd算法求解最短路径距离问题>的内容,这里要做的是Dijkstra算法,与Floyd算法类似,二者的用途均为求解最短路径距离,在图中有着广泛的应用,二者的原理都是老生常谈了,毕竟本科学习数据结构的同学是不可能不学习这两个算法的,所以在这里我也不再累赘,只简单概述一下这个算法的核心思想: Dijkstra算法的输入有两个参数,一个是原始的数据矩

  • python3实现Dijkstra算法最短路径的实现

    问题描述 现有一个有向赋权图.如下图所示: 问题:根据每条边的权值,求出从起点s到其他每个顶点的最短路径和最短路径的长度. 说明:不考虑权值为负的情况,否则会出现负值圈问题. s:起点 v:算法当前分析处理的顶点 w:与v邻接的顶点 d v d_v dv​:从s到v的距离 d w d_w dw​:从s到w的距离 c v , w c_{v,w} cv,w​:顶点v到顶点w的边的权值 问题分析 Dijkstra算法按阶段进行,同无权最短路径算法(先对距离为0的顶点处理,再对距离为1的顶点处理,以此类

  • Python实现最短路径问题的方法

    目录 一.创建图 二.问题来源 三.Dijkstra算法 四.Floyd算法 五.代码测试 一.创建图 在开始之前,我们先创建一个图,使用邻接矩阵表示有向网: class Graph(object): """ 以邻接矩阵为存储结构创建有向网 """ def __init__(self, kind): # 图的类型: 无向图, 有向图, 无向网, 有向网 # kind: Undigraph, Digraph, Undinetwork, Dinetw

  • Python Nose框架编写测试用例方法

    1. 关于Nose nose项目是于2005年发布的,也就是 py.test改名后的一年.它是由 Jason Pellerin 编写的,支持与 py.test 相同的测试习惯做法,但是这个包更容易安装和维护. nose的口号是:扩展unittest,nose让测试更简单! nose官网:http://nose.readthedocs.io/en/latest/index.html 使用nose框架进行Python项目的自动化测试,可以参考:http://www.cnblogs.com/liaof

  • python字符类型的一些方法小结

    int 数字类型 class int(object): """ int(x=0) -> int or long int(x, base=10) -> int or long Convert a number or string to an integer, or return 0 if no arguments are given. If x is floating point, the conversion truncates towards zero. If

  • Python写入CSV文件的方法

    本文实例讲述了Python写入CSV文件的方法.分享给大家供大家参考.具体如下: # _*_ coding:utf-8 _*_ #xiaohei.python.seo.call.me:) #win+python2.7.x import csv csvfile = file('csvtest.csv', 'wb') writer = csv.writer(csvfile) writer.writerow(['id', 'url', 'keywords']) data = [ ('1', 'http

  • Python闭包实现计数器的方法

    本文实例讲述了Python闭包实现计数器的方法.分享给大家供大家参考.具体实现方法如下: 先来看看专业的解释:闭包(Closure)是词法闭包(Lexical Closure)的简称,是引用了自由变量的函数.这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外.所以,有另一种说法认为闭包是由函数和与其相关的引用环境组合而成的实体. 代码如下: #!/usr/bin/env python #coding=utf-8 def generate_counter(): CNT =

  • Python实现配置文件备份的方法

    本文实例讲述了Python实现配置文件备份的方法.分享给大家供大家参考.具体如下: 这里平台为Linux: #!/usr/bin/python #Author:gdlinjianying@qq.com import os import time source = ['/etc/sysconfig/network-scripts', '/etc/sysconfig/network', '/etc/resolv.conf'] target_dir = '/opt/' target = target_

  • python实现备份目录的方法

    本文实例讲述了python实现备份目录的方法.分享给大家供大家参考.具体如下: 备份脚本1: #!/usr/bin/python # Filename: backup_ver1.py import os import time # 1. The files and directories to be backed up are specified in a list. source = ['/home/swaroop/byte', '/home/swaroop/bin'] # If you ar

  • python生成IP段的方法

    本文实例讲述了python生成IP段的方法.分享给大家供大家参考.具体实现方法如下: #!/usr/local/bin/python #-*- coding: UTF-8 -*- ############################################################# # python 生成IP段 ############################################################# if __name__ == '__mai

  • python实现清屏的方法

    本文实例讲述了python实现清屏的方法.分享给大家供大家参考.具体分析如下: 一试: >>> import os >>> os.system('cls') 会出现: 0 >>> 再试: >>> import os >>> i = os.system('cls') 很干净很干净的哟! 总结:用系统的清屏命令. 希望本文所述对大家的Python程序设计有所帮助.

  • python处理二进制数据的方法

    本文实例讲述了python处理二进制数据的方法.分享给大家供大家参考.具体如下: #!/usr/env/env python #-*- coding: cp936 -*- ''''' add Head Infomation for pcm file ''' import sys import struct import os __author__ = 'bob_hu, hewitt924@gmail.com' __date__ = 'Dec 19,2011' __update__ = 'Dec

随机推荐