Python实现摄像头实时换脸详解

目录
  • 环境与效果
  • 基本原理
  • 完整源码

环境与效果

python3.9.6

pycharm 2021

库环境:

dlib

opencv-python

视频图片效果如下:

视频链接

摄像头实时换脸,老师都不认识我了!!

基本原理

使用dlib的shape_predictor_68_face_landmarks.dat模型获取一张有正脸的图片(1.png)和摄像头的自己的68个人脸特征点。

根据人脸特征点获取分别获取人脸掩模

对第一个图片仿射变换使其脸部对准摄像头图片中的脸部得到新的图片

对人脸掩模执行相同的操作仿射

将两个性的得到图取并集(不能让别的地方空了)

用opencv对两上面操作,对仿射变换后的a图片和摄像头图片进行泊松融合

完整源码

# -*- coding: utf-8 -*-

import cv2
import dlib
import numpy as np

detector = dlib.get_frontal_face_detector()  # dlib的正向人脸检测器
predictor = dlib.shape_predictor(r'shape_predictor_68_face_landmarks.dat')  # dlib的人脸形状检测器

def get_image_size(image):
    """
    获取图片大小(高度,宽度)
    :param image: image
    :return: (高度,宽度)
    """
    image_size = (image.shape[0], image.shape[1])
    return image_size

def get_face_landmarks(image, face_detector, shape_predictor):
    """
    获取人脸标志,68个特征点
    :param image: image
    :param face_detector: dlib.get_frontal_face_detector
    :param shape_predictor: dlib.shape_predictor
    :return: np.array([[],[]]), 68个特征点
    """
    dets = face_detector(image, 1)

    shape = shape_predictor(image, dets[0])
    face_landmarks = np.array([[p.x, p.y] for p in shape.parts()])
    return face_landmarks

def get_face_mask(image_size, face_landmarks):
    """
    获取人脸掩模
    :param image_size: 图片大小
    :param face_landmarks: 68个特征点
    :return: image_mask, 掩模图片
    """
    mask = np.zeros(image_size, dtype=np.uint8)
    points = np.concatenate([face_landmarks[0:16], face_landmarks[26:17:-1]])
    cv2.fillPoly(img=mask, pts=[points], color=255)
    return mask

def get_affine_image(image1, image2, face_landmarks1, face_landmarks2):
    """
    获取图片1仿射变换后的图片
    :param image1: 图片1, 要进行仿射变换的图片
    :param image2: 图片2, 只要用来获取图片大小,生成与之大小相同的仿射变换图片
    :param face_landmarks1: 图片1的人脸特征点
    :param face_landmarks2: 图片2的人脸特征点
    :return: 仿射变换后的图片
    """
    three_points_index = [18, 8, 25]
    M = cv2.getAffineTransform(face_landmarks1[three_points_index].astype(np.float32),
                               face_landmarks2[three_points_index].astype(np.float32))
    dsize = (image2.shape[1], image2.shape[0])
    affine_image = cv2.warpAffine(image1, M, dsize)
    return affine_image.astype(np.uint8)

def get_mask_center_point(image_mask):
    """
    获取掩模的中心点坐标
    :param image_mask: 掩模图片
    :return: 掩模中心
    """
    image_mask_index = np.argwhere(image_mask > 0)
    miny, minx = np.min(image_mask_index, axis=0)
    maxy, maxx = np.max(image_mask_index, axis=0)
    center_point = ((maxx + minx) // 2, (maxy + miny) // 2)
    return center_point

def get_mask_union(mask1, mask2):
    """
    获取两个掩模掩盖部分的并集
    :param mask1: mask_image, 掩模1
    :param mask2: mask_image, 掩模2
    :return: 两个掩模掩盖部分的并集
    """
    mask = np.min([mask1, mask2], axis=0)  # 掩盖部分并集
    mask = ((cv2.blur(mask, (5, 5)) == 255) * 255).astype(np.uint8)  # 缩小掩模大小
    mask = cv2.blur(mask, (3, 3)).astype(np.uint8)  # 模糊掩模
    return mask

def skin_color_adjustment(im1, im2, mask=None):
    """
    肤色调整
    :param im1: 图片1
    :param im2: 图片2
    :param mask: 人脸 mask. 如果存在,使用人脸部分均值来求肤色变换系数;否则,使用高斯模糊来求肤色变换系数
    :return: 根据图片2的颜色调整的图片1
    """
    if mask is None:
        im1_ksize = 55
        im2_ksize = 55
        im1_factor = cv2.GaussianBlur(im1, (im1_ksize, im1_ksize), 0).astype(np.float)
        im2_factor = cv2.GaussianBlur(im2, (im2_ksize, im2_ksize), 0).astype(np.float)
    else:
        im1_face_image = cv2.bitwise_and(im1, im1, mask=mask)
        im2_face_image = cv2.bitwise_and(im2, im2, mask=mask)
        im1_factor = np.mean(im1_face_image, axis=(0, 1))
        im2_factor = np.mean(im2_face_image, axis=(0, 1))

    im1 = np.clip((im1.astype(np.float) * im2_factor / np.clip(im1_factor, 1e-6, None)), 0, 255).astype(np.uint8)
    return im1

def main():
    im1 = cv2.imread('1.png')  # face_image
    im1 = cv2.resize(im1, (600, im1.shape[0] * 600 // im1.shape[1]))
    landmarks1 = get_face_landmarks(im1, detector, predictor)  # 68_face_landmarks
    if landmarks1 is None:
        print('{}:检测不到人脸'.format(image_face_path))
        exit(1)
    im1_size = get_image_size(im1)  # 脸图大小
    im1_mask = get_face_mask(im1_size, landmarks1)  # 脸图人脸掩模

    cam = cv2.VideoCapture(0)
    while True:
        ret_val, im2 = cam.read()  # camera_image
        landmarks2 = get_face_landmarks(im2, detector, predictor)  # 68_face_landmarks
        if landmarks2 is not None:
            im2_size = get_image_size(im2)  # 摄像头图片大小
            im2_mask = get_face_mask(im2_size, landmarks2)  # 摄像头图片人脸掩模

            affine_im1 = get_affine_image(im1, im2, landmarks1, landmarks2)  # im1(脸图)仿射变换后的图片
            affine_im1_mask = get_affine_image(im1_mask, im2, landmarks1, landmarks2)  # im1(脸图)仿射变换后的图片的人脸掩模

            union_mask = get_mask_union(im2_mask, affine_im1_mask)  # 掩模合并

            affine_im1 = skin_color_adjustment(affine_im1, im2, mask=union_mask)  # 肤色调整
            point = get_mask_center_point(affine_im1_mask)  # im1(脸图)仿射变换后的图片的人脸掩模的中心点
            seamless_im = cv2.seamlessClone(affine_im1, im2, mask=union_mask, p=point, flags=cv2.NORMAL_CLONE)  # 进行泊松融合

            cv2.imshow('seamless_im', seamless_im)
        else:
            cv2.imshow('seamless_im', im2)
        if cv2.waitKey(1) == 27:  # 按Esc退出
            break
    cv2.destroyAllWindows()

if __name__ == '__main__':
    main()

到此这篇关于Python实现摄像头实时换脸详解的文章就介绍到这了,更多相关Python实时换脸内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现AI换脸功能

    需要用到的接口: 获取人脸信息的接口:https://api-cn.faceplusplus.com/facepp/v3/detect 实现换脸的接口 :https://api-cn.faceplusplus.com/imagepp/v1/mergeface 代码分为三步 代码: import requests import json import simplejson import base64 #第一步:获取人脸关键点 def find_face(imgpath): """

  • 使用Python制作表情包实现换脸功能

    "表情包"是现在非常流行的交流方式,通过一张图片就能把文字不能表达或不便于表达的情感给表示出来,表情包一经诞生,就统治了中国人的社交圈,尤其是年轻人,他们的社交方式是所谓"天可不聊,图不可不斗",几乎任何对话都会出现表情包的身影,一言不合就斗图,自己也会在聊天中发几个表情包,可是总会造成一些小误会,比如下面的图 有好多朋友看到这个表情包之后误以为这也是我用Python做的,其实不然,这个图就是网上普通的表情包,但是今天我要用Python做几个表情包. 今天制作表情包

  • 小 200 行 Python 代码制作一个换脸程序

    简介 在这篇文章中我将介绍如何写一个简短(200行)的 Python 脚本,来自动地将一幅图片的脸替换为另一幅图片的脸. 这个过程分四步: 检测脸部标记. 旋转.缩放.平移和第二张图片,以配合第一步. 调整第二张图片的色彩平衡,以适配第一张图片. 把第二张图像的特性混合在第一张图像中. 1.使用 dlib 提取面部标记 该脚本使用 dlib 的 Python 绑定来提取面部标记: Dlib 实现了 Vahid Kazemi 和 Josephine Sullivan 的<使用回归树一毫秒脸部对准>

  • 超简单使用Python换脸实例

    换脸! 这段时间,deepfakes搞得火热,比方说把<射雕英雄传>里的朱茵换成了杨幂,看下面的图!毫无违和感! 其实早在之前,基于AI换脸的技术就得到了应用,比方说<速度与激情7>里面的演员保罗.沃克,由于发生意外, 后期的视频都是由他的兄弟完成拍摄,然后再对其换脸,最终也就是我们影院看到的效果. 当然,也有人把这项技术应用在其他的领域,例如把某种电影的女主换成了盖尔.加朵(<神奇女侠>的扮演者),,, 这真的是对"技术是一把又刃剑"阐述的十分到位

  • Python实现摄像头实时换脸详解

    目录 环境与效果 基本原理 完整源码 环境与效果 python3.9.6 pycharm 2021 库环境: dlib opencv-python 视频图片效果如下: 视频链接 摄像头实时换脸,老师都不认识我了!! 基本原理 使用dlib的shape_predictor_68_face_landmarks.dat模型获取一张有正脸的图片(1.png)和摄像头的自己的68个人脸特征点. 根据人脸特征点获取分别获取人脸掩模 对第一个图片仿射变换使其脸部对准摄像头图片中的脸部得到新的图片 对人脸掩模执

  • 使用Python实现控制摄像头的方法详解

    目录 前言 第一部分:环境搭建 步骤一:安装 Python 步骤二:安装 OpenCV 步骤三:连接摄像头 第二部分:摄像头基本操作 1. 捕获视频帧 2.保存视频 总结 前言 当今,随着计算机技术的发展,摄像头已经成为了人们生活中不可或缺的一部分.而Python作为一种流行的编程语言,也可以轻松地控制和操作摄像头.无论你是想用Python写一个简单的摄像头应用程序,还是想在机器学习和计算机视觉项目中使用摄像头,Python都可以帮助你实现.本文将介绍如何使用Python中的常用库(例如Open

  • python 垃圾收集机制的实例详解

     python 垃圾收集机制的实例详解 pythonn垃圾收集方面的内容如果要细讲还是挺多的,这里只是做一个大概的概括 Python最主要和绝大多数时候用的都是引用计数,每一个PyObject定义如下: #define PyObject_HEAD \ Py_ssize_t ob_refcnt; \ struct _typeobject *ob_type; typedef struct _object { PyObject_HEAD } PyObject; 每个pyobject都有一个refcnt

  • 对Python Pexpect 模块的使用说明详解

    背景介绍 Expect 程序主要用于人机对话的模拟,就是那种系统提问,人来回答 yes/no ,或者账号登录输入用户名和密码等等的情况.因为这种情况特别多而且繁琐,所以很多语言都有各种自己的实现.最初的第一个 Expect 是由 TCL 语言实现的,所以后来的 Expect 都大致参考了最初的用法和流程,整体来说大致的流程包括: 运行程序 程序要求人的判断和输入 Expect 通过关键字匹配 根据关键字向程序发送符合的字符串 TCL 语言实现的 Expect 功能非常强大,我曾经用它实现了防火墙

  • Python任务调度利器之APScheduler详解

    任务调度应用场景 所谓的任务调度是指安排任务的执行计划,即何时执行,怎么执行等.在现实项目中经常出现它们的身影:特别是数据类项目,比如实时统计每5分钟网站的访问量,就需要每5分钟定时从日志数据分析访问量. 总结下任务调度应用场景: 离线作业调度:按时间粒度执行某项任务 共享缓存更新:定时刷新缓存,如redis缓存:不同进程间的共享数据 任务调度工具 linux的crontab, 支持按照分钟/小时/天/月/周粒度,执行任务 java的Quartz windows的任务计划 本文介绍的是pytho

  • python tqdm用法及实例详解

    1.说明 tqdm是一个方便且易于扩展的Python进度条,可以在python执行长循环时在命令行界面实时地显示一个进度提示信息,包括执行进度.处理速度等信息,且可在一定程度上进行定制. 2.使用pip来安装tqdm模块 pip install tqdm 3.tqdm使用方法 tqdm.tqdm(可迭代对象) ,括号中的可迭代对象可以是个list,tuple等. from tqdm import tqdm,trange import time a = [1,2,3] for i in tqdm(

  • Python制作微信机器人教程详解

    目录 一.环境配置 二.登录 三. 第一个简单的消息发送监控 四.指定某个微信好友发送消息 五.所有微信群监控 六.公众号监听 七.定时发送消息 八.微信智能聊天机器人 一.环境配置 大多数人无法登录网页版,所以饶过它模拟电脑登录,这个模块一定记得安装: pip install itchat-uos pip install itchat 二.登录 #码登录个人微信账号 import itchat itchat.auto_login(hotReload=True)#hotReload= True可

  • Python实现图像压缩和图像处理详解

    目录 入门了解1.颜色 入门了解 2. 像素 用Pillow处理图像 1. 读取和显示图像 2. 剪裁图像 3. 生成缩略图 4. 缩放和黏贴图像 5. 旋转和翻转 6. 操作像素 7. 滤镜效果 使用Pillow绘图 总结 入门了解1.颜色 如果你有使用颜料画画的经历,那么一定知道混合红.黄.蓝三种颜料可以得到其他的颜色,事实上这三种颜色就是美术中的三原色,它们是不能再分解的基本颜色.在计算机中,我们可以将红.绿.蓝三种色光以不同的比例叠加来组合成其他的颜色,因此这三种颜色就是色光三原色.在计

  • Python探索之ModelForm代码详解

    这是一个神奇的组件,通过名字我们可以看出来,这个组件的功能就是把model和form组合起来,对,你没猜错,相信自己的英语水平. 先来一个简单的例子来看一下这个东西怎么用: 比如我们的数据库中有这样一张学生表,字段有姓名,年龄,爱好,邮箱,电话,住址,注册时间等等一大堆信息,现在让你写一个创建学生的页面,你的后台应该怎么写呢? 首先我们会在前端一个一个罗列出这些字段,让用户去填写,然后我们从后天一个一个接收用户的输入,创建一个新的学生对象,保存 其实,重点不是这些,而是合法性验证,我们需要在前端

  • python装饰器实例大详解

    一.作用域 在python中,作用域分为两种:全局作用域和局部作用域. 全局作用域是定义在文件级别的变量,函数名.而局部作用域,则是定义函数内部. 关于作用域,我们要理解两点: a.在全局不能访问到局部定义的变量 b.在局部能够访问到全局定义的变量,但是不能修改全局定义的变量(当然有方法可以修改) 下面我们来看看下面实例: x = 1 def funx(): x = 10 print(x) # 打印出10 funx() print(x) # 打印出1 如果局部没有定义变量x,那么函数内部会从内往

随机推荐