Python之Sklearn使用入门教程

1.Sklearn简介

Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression)、降维(Dimensionality Reduction)、分类(Classfication)、聚类(Clustering)等方法。当我们面临机器学习问题时,便可根据下图来选择相应的方法。Sklearn具有以下特点:

  • 简单高效的数据挖掘和数据分析工具
  • 让每个人能够在复杂环境中重复使用
  • 建立NumPy、Scipy、MatPlotLib之上

2.Sklearn安装

Sklearn安装要求Python(>=2.7 or >=3.3)NumPy (>= 1.8.2)SciPy (>= 0.13.3)。如果已经安装NumPy和SciPy,安装scikit-learn可以使用pip install -U scikit-learn

3.Sklearn通用学习模式

Sklearn中包含众多机器学习方法,但各种学习方法大致相同,我们在这里介绍Sklearn通用学习模式。首先引入需要训练的数据,Sklearn自带部分数据集,也可以通过相应方法进行构造,4.Sklearn datasets中我们会介绍如何构造数据。然后选择相应机器学习方法进行训练,训练过程中可以通过一些技巧调整参数,使得学习准确率更高。模型训练完成之后便可预测新数据,然后我们还可以通过MatPlotLib等方法来直观的展示数据。另外还可以将我们已训练好的Model进行保存,方便移动到其他平台,不必重新训练。

from sklearn import datasets#引入数据集,sklearn包含众多数据集
from sklearn.model_selection import train_test_split#将数据分为测试集和训练集
from sklearn.neighbors import KNeighborsClassifier#利用邻近点方式训练数据

###引入数据###
iris=datasets.load_iris()#引入iris鸢尾花数据,iris数据包含4个特征变量
iris_X=iris.data#特征变量
iris_y=iris.target#目标值
X_train,X_test,y_train,y_test=train_test_split(iris_X,iris_y,test_size=0.3)#利用train_test_split进行将训练集和测试集进行分开,test_size占30%
print(y_train)#我们看到训练数据的特征值分为3类
'''
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]
 '''

###训练数据###
knn=KNeighborsClassifier()#引入训练方法
knn.fit(X_train,y_train)#进行填充测试数据进行训练

###预测数据###
print(knn.predict(X_test))#预测特征值
'''
[1 1 1 0 2 2 1 1 1 0 0 0 2 2 0 1 2 2 0 1 0 0 0 0 0 0 2 1 0 0 0 1 0 2 0 2 0
 1 2 1 0 0 1 0 2]
'''
print(y_test)#真实特征值
'''
[1 1 1 0 1 2 1 1 1 0 0 0 2 2 0 1 2 2 0 1 0 0 0 0 0 0 2 1 0 0 0 1 0 2 0 2 0
 1 2 1 0 0 1 0 2]
'''

4.Sklearn datasets

Sklearn提供一些标准数据,我们不必再从其他网站寻找数据进行训练。例如我们上面用来训练的load_iris数据,可以很方便的返回数据特征变量和目标值。除了引入数据之外,我们还可以通过load_sample_images()来引入图片。

除了sklearn提供的一些数据之外,还可以自己来构造一些数据帮助我们学习。

from sklearn import datasets#引入数据集
#构造的各种参数可以根据自己需要调整
X,y=datasets.make_regression(n_samples=100,n_features=1,n_targets=1,noise=1)

###绘制构造的数据###
import matplotlib.pyplot as plt
plt.figure()
plt.scatter(X,y)
plt.show()

5.Sklearn Model的属性和功能

数据训练完成之后得到模型,我们可以根据不同模型得到相应的属性和功能,并将其输出得到直观结果。假如通过线性回归训练之后得到线性函数y=0.3x+1,我们可通过_coef得到模型的系数为0.3,通过_intercept得到模型的截距为1。

from sklearn import datasets
from sklearn.linear_model import LinearRegression#引入线性回归模型

###引入数据###
load_data=datasets.load_boston()
data_X=load_data.data
data_y=load_data.target
print(data_X.shape)
#(506, 13)data_X共13个特征变量

###训练数据###
model=LinearRegression()
model.fit(data_X,data_y)
model.predict(data_X[:4,:])#预测前4个数据

###属性和功能###
print(model.coef_)
'''
[ -1.07170557e-01  4.63952195e-02  2.08602395e-02  2.68856140e+00
 -1.77957587e+01  3.80475246e+00  7.51061703e-04 -1.47575880e+00
  3.05655038e-01 -1.23293463e-02 -9.53463555e-01  9.39251272e-03
 -5.25466633e-01]
'''
print(model.intercept_)
#36.4911032804
print(model.get_params())#得到模型的参数
#{'copy_X': True, 'normalize': False, 'n_jobs': 1, 'fit_intercept': True}
print(model.score(data_X,data_y))#对训练情况进行打分
#0.740607742865

6.Sklearn数据预处理

数据集的标准化对于大部分机器学习算法来说都是一种常规要求,如果单个特征没有或多或少地接近于标准正态分布,那么它可能并不能在项目中表现出很好的性能。在实际情况中,我们经常忽略特征的分布形状,直接去均值来对某个特征进行中心化,再通过除以非常量特征(non-constant features)的标准差进行缩放。

例如, 许多学习算法中目标函数的基础都是假设所有的特征都是零均值并且具有同一阶数上的方差(比如径向基函数、支持向量机以及L1L2正则化项等)。如果某个特征的方差比其他特征大几个数量级,那么它就会在学习算法中占据主导位置,导致学习器并不能像我们说期望的那样,从其他特征中学习。例如我们可以通过Scale将数据缩放,达到标准化的目的。

from sklearn import preprocessing
import numpy as np
a=np.array([[10,2.7,3.6],
      [-100,5,-2],
      [120,20,40]],dtype=np.float64)
print(a)
print(preprocessing.scale(a))#将值的相差度减小
'''
[[ 10.   2.7  3.6]
 [-100.   5.  -2. ]
 [ 120.  20.  40
[[ 0.     -0.85170713 -0.55138018]
 [-1.22474487 -0.55187146 -0.852133 ]
 [ 1.22474487 1.40357859 1.40351318]]
'''

我们来看下预处理前和预处理预处理后的差别,预处理之前模型评分为0.511111111111,预处理后模型评分为0.933333333333,可以看到预处理对模型评分有很大程度的提升。

from sklearn.model_selection import train_test_split
from sklearn.datasets.samples_generator import make_classification
from sklearn.svm import SVC
import matplotlib.pyplot as plt

###生成的数据如下图所示###
plt.figure
X,y=make_classification(n_samples=300,n_features=2,n_redundant=0,n_informative=2,       random_state=22,n_clusters_per_class=1,scale=100)
plt.scatter(X[:,0],X[:,1],c=y)
plt.show()

###利用minmax方式对数据进行规范化###
X=preprocessing.minmax_scale(X)#feature_range=(-1,1)可设置重置范围
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
clf=SVC()
clf.fit(X_train,y_train)
print(clf.score(X_test,y_test))
#0.933333333333
#没有规范化之前我们的训练分数为0.511111111111,规范化后为0.933333333333,准确度有很大提升

7.交叉验证

交叉验证的基本思想是将原始数据进行分组,一部分做为训练集来训练模型,另一部分做为测试集来评价模型。交叉验证用于评估模型的预测性能,尤其是训练好的模型在新数据上的表现,可以在一定程度上减小过拟合。还可以从有限的数据中获取尽可能多的有效信息。

机器学习任务中,拿到数据后,我们首先会将原始数据集分为三部分:训练集、验证集和测试集。 训练集用于训练模型,验证集用于模型的参数选择配置,测试集对于模型来说是未知数据,用于评估模型的泛化能力。不同的划分会得到不同的最终模型。

以前我们是直接将数据分割成70%的训练数据和测试数据,现在我们利用K折交叉验证分割数据,首先将数据分为5组,然后再从5组数据之中选择不同数据进行训练。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

###引入数据###
iris=load_iris()
X=iris.data
y=iris.target

###训练数据###
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
#引入交叉验证,数据分为5组进行训练
from sklearn.model_selection import cross_val_score
knn=KNeighborsClassifier(n_neighbors=5)#选择邻近的5个点
scores=cross_val_score(knn,X,y,cv=5,scoring='accuracy')#评分方式为accuracy
print(scores)#每组的评分结果
#[ 0.96666667 1.     0.93333333 0.96666667 1.    ]5组数据
print(scores.mean())#平均评分结果
#0.973333333333

那么是否n_neighbor=5便是最好呢,我们来调整参数来看模型最终训练分数。

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score#引入交叉验证
import matplotlib.pyplot as plt
###引入数据###
iris=datasets.load_iris()
X=iris.data
y=iris.target
###设置n_neighbors的值为1到30,通过绘图来看训练分数###
k_range=range(1,31)
k_score=[]
for k in k_range:
  knn=KNeighborsClassifier(n_neighbors=k)
  scores=cross_val_score(knn,X,y,cv=10,scoring='accuracy')#for classfication
  k_score.append(scores.mean())
plt.figure()
plt.plot(k_range,k_score)
plt.xlabel('Value of k for KNN')
plt.ylabel('CrossValidation accuracy')
plt.show()
#K过大会带来过拟合问题,我们可以选择12-18之间的值

我们可以看到n_neighbor在12-18之间评分比较高,实际项目之中我们可以通过这种方式来选择不同参数。另外我们还可以选择2-fold Cross Validation,Leave-One-Out Cross Validation等方法来分割数据,比较不同方法和参数得到最优结果。

我们将上述代码中的循环部分改变一下,评分函数改为neg_mean_squared_error,便得到对于不同参数时的损失函数。

for k in k_range:
  knn=KNeighborsClassifier(n_neighbors=k)
  loss=-cross_val_score(knn,X,y,cv=10,scoring='neg_mean_squared_error')# for regression
  k_score.append(loss.mean())

8.过拟合问题

什么是过拟合问题呢?例如下面这张图片,黑色线已经可以很好的分类出红色点和蓝色点,但是在机器学习过程中,模型过于纠结准确度,便形成了绿色线的结果。然后在预测测试数据集结果的过程中往往会浪费很多时间并且准确率不是太好。

我们先举例如何辨别overfitting问题。Sklearn.learning_curve中的learning curve可以很直观的看出Model学习的进度,对比发现有没有过拟合。

from sklearn.model_selection import learning_curve
from sklearn.datasets import load_digits
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np

#引入数据
digits=load_digits()
X=digits.data
y=digits.target

#train_size表示记录学习过程中的某一步,比如在10%,25%...的过程中记录一下
train_size,train_loss,test_loss=learning_curve(
  SVC(gamma=0.1),X,y,cv=10,scoring='neg_mean_squared_error',
  train_sizes=[0.1,0.25,0.5,0.75,1]
)
train_loss_mean=-np.mean(train_loss,axis=1)
test_loss_mean=-np.mean(test_loss,axis=1)

plt.figure()
#将每一步进行打印出来
plt.plot(train_size,train_loss_mean,'o-',color='r',label='Training')
plt.plot(train_size,test_loss_mean,'o-',color='g',label='Cross-validation')
plt.legend('best')
plt.show()

如果我们改变gamma的值,那么会改变相应的Loss函数。损失函数便在10左右停留,此时便能直观的看出过拟合。

下面我们通过修改gamma参数来修正过拟合问题。

from sklearn.model_selection import validation_curve#将learning_curve改为validation_curve
from sklearn.datasets import load_digits
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np
#引入数据
digits=load_digits()
X=digits.data
y=digits.target

#改变param来观察Loss函数情况
param_range=np.logspace(-6,-2.3,5)
train_loss,test_loss=validation_curve(
  SVC(),X,y,param_name='gamma',param_range=param_range,cv=10,
  scoring='neg_mean_squared_error'
)
train_loss_mean=-np.mean(train_loss,axis=1)
test_loss_mean=-np.mean(test_loss,axis=1)

plt.figure()
plt.plot(param_range,train_loss_mean,'o-',color='r',label='Training')
plt.plot(param_range,test_loss_mean,'o-',color='g',label='Cross-validation')
plt.xlabel('gamma')
plt.ylabel('loss')
plt.legend(loc='best')
plt.show()

通过改变不同的gamma值我们可以看到Loss函数的变化情况。从图中可以看到,如果gamma的值大于0.001便会出现过拟合的问题,那么我们构建模型时gamma参数设置应该小于0.001。

9.保存模型

我们花费很长时间用来训练数据,调整参数,得到最优模型。但如果改变平台,我们还需要重新训练数据和修正参数来得到模型,将会非常的浪费时间。此时我们可以先将model保存起来,然后便可以很方便的将模型迁移。

from sklearn import svm
from sklearn import datasets

#引入和训练数据
iris=datasets.load_iris()
X,y=iris.data,iris.target
clf=svm.SVC()
clf.fit(X,y)

#引入sklearn中自带的保存模块
from sklearn.externals import joblib
#保存model
joblib.dump(clf,'sklearn_save/clf.pkl')

#重新加载model,只有保存一次后才能加载model
clf3=joblib.load('sklearn_save/clf.pkl')
print(clf3.predict(X[0:1]))
#存放model能够更快的获得以前的结果

参考链接

此文档整理自莫烦sklearn视频教程,链接为https://morvanzhou.github.io/tutorials/machine-learning/sklearn/

到此这篇关于Python之Sklearn使用入门教程的文章就介绍到这了,更多相关Sklearn 入门内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python常用库之NumPy和sklearn入门

    Numpy 和 scikit-learn 都是python常用的第三方库.numpy库可以用来存储和处理大型矩阵,并且在一定程度上弥补了python在运算效率上的不足,正是因为numpy的存在使得python成为数值计算领域的一大利器:sklearn是python著名的机器学习库,它其中封装了大量的机器学习算法,内置了大量的公开数据集,并且拥有完善的文档,因此成为目前最受欢迎的机器学习学习与实践的工具. 1. NumPy库 首先导入Numpy库 import numpy as np 1.1 nu

  • ML神器:sklearn的快速使用及入门

    传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都有哪些常用的函数以及它们的用法是怎么样的.希望你看完这篇文章可以最为快速的开始你的学习任务. 1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践能力,同时这个过程也可以加深你对理论

  • Python之Sklearn使用入门教程

    1.Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法.Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上

  • python扩展库numpy入门教程

    目录 一.numpy是什么? 二.numpy数组 2.1 数组使用 2.2 创建数组 1. 使用empty创建空数组 2. 使用arange函数创建 3. 使用zeros函数生成数组 4. ones函数生成数组 5. diag函数生成对角矩阵 6. N维数组 2.3 访问数组元素 三.了解矩阵 3.1 广播 一.numpy是什么? 扩展库numpy是Python支持科学计算的重要扩展库,是数据分析和科学计算领域如scipy.pandas.sklearn 等众多扩展库中的必备扩展库之一,提供了强大

  • Python 机器学习库 NumPy入门教程

    NumPy是一个Python语言的软件包,它非常适合于科学计算.在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础库. 本文是对它的一个入门教程. 介绍 NumPy是一个用于科技计算的基础软件包,它是Python语言实现的.它包含了: 强大的N维数组结构 精密复杂的函数 可集成到C/C++和Fortran代码的工具 线性代数,傅里叶变换以及随机数能力 除了科学计算的用途以外,NumPy也可被用作高效的通用数据的多维容器.由于它适用于任意类型的数据,这使得NumPy可以无缝和

  • Python 数据处理库 pandas 入门教程基本操作

    pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有表现力的数据结构,目的是使"关系"或"标记"数据的工作既简单又直观.它旨在成为在Python中进行实际数据分析的高级构建块. 入门介绍 pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据.

  • python Tkinter的简单入门教程

    我们将编写一个英尺和米的转换程序,通过这个程序,我们将会了解一个真正的实用程序该怎么设计和编写,我们也将会了解到 Tk 程序内部的基本样子.不必完全掌握里面的所有知识,更多细节将会在之后的章节中讲到.本节仅要求了解即可,使读者明白如何设计和编写一个 Tk GUI 程序. 设计 我们将要写一个简单的将英尺(feet)转换为米(me­ters)的 GUI 工具,按照我们的经验,它应该长成下面那个样子: 这个程序会有一个输入框用来输入英尺数,还将会有一个显示框用来显示被转换之后的数字,几个用于显示提示

  • Python 绘图库 Matplotlib 入门教程

    运行环境 由于这是一个Python语言的软件包,因此需要你的机器上首先安装好Python语言的环境.关于这一点,请自行在网络上搜索获取方法. 关于如何安装Matplotlib请参见这里:Matplotlib Installing. 笔者推荐大家通过pip的方式进行安装,具体方法如下: sudo pip3 install matplotlib 本文中的源码和测试数据可以在这里获取:matplotlib_tutorial 本文的代码示例会用到另外一个Python库:NumPy.建议读者先对NumPy

  • python Django框架快速入门教程(后台管理)

    Python下有许多款不同的 Web 框架.Django是重量级选手中最有代表性的一位.许多成功的网站和APP都基于Django. Django 是一个开放源代码的 Web 应用框架,由 Python 写成. Django 遵守 BSD 版权,初次发布于 2005 年 7 月, 并于 2008 年 9 月发布了第一个正式版本 1.0 . Django 采用了 MVT 的软件设计模式,即模型(Model),视图(View)和模板(Template). 参考官方文档:Django官方文档https:

  • Python面向对象程序设计OOP入门教程【类,实例,继承,重载等】

    本文实例讲述了Python面向对象程序设计OOP.分享给大家供大家参考,具体如下: 类是Python所提供的最有用的的工具之一.合理使用时,类可以大量减少开发的时间.类也在流行的Python工具中使用,例如,tkinter GUI API. 为何使用类 与面向对象的Java一样,类是对现实世界的一种抽象. 从更具体的程序设计观点来看,类是Python的程序组成单元,就像函数和模块一样:类是封装逻辑和数据的另一种方式.实际上,类也定义新的命名空间,在很大程度上就像模块.但是类有三个重要的独到之处,

  • Python中的Numpy入门教程

    1.Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数.如果接触过matlab.scilab,那么numpy很好入手. 在以下的代码示例中,总是先导入了numpy: 复制代码 代码如下: >>> import numpy as np>>> print np.version.version1.6.2

  • 最基础的Python的socket编程入门教程

    本文介绍使用Python进行Socket网络编程,假设读者已经具备了基本的网络编程知识和Python的基本语法知识,本文中的代码如果没有说明则都是运行在Python 3.4下. Python的socket功能封装在socket库中,要使用socket,记得先import socket,socket库的详细介绍参见官方文档. 创建Socket 首先创建一个socket,使用socket库中得socket函数创建. import socket # create an INET, STREAM soc

随机推荐