Python-openCV开运算实例

我就废话不多说了,大家还是直接看代码吧~

#coding=utf-8
import cv2
import numpy as np
img=cv2.imread('timg.jpeg',cv2.CV_LOAD_IMAGE_GRAYSCALE)
#创建矩形结构单元
g=cv2.getStructuringElement(cv2.MORPH_RECT,(9,9))
#形态学处理,开运算
img_open=cv2.morphologyEx(img,cv2.MORPH_OPEN,g)

img_hat=img-img_open
cv2.imshow('img',img)
#cv2.imshow('erode',edge_dilate)
cv2.imshow('img_open',img_open)
cv2.imshow('img_open_',img_hat)
cv2.waitKey(0)
cv2.destroyAllWindows()

补充知识:python 图像开闭运算操作

开运算和闭运算就是将腐蚀和膨胀按照一定的次序进行处理。但这两者并不是可逆的,即先开后闭并不能得到原先的图像。

闭运算用来连接被误分为许多小块的对象,而开运算用于移除由图像噪音形成的斑点。

闭运算操作代码如下:

import cv2
def closeopration(img):
 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
 iClose = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)
 return iClose

image = cv2.imread('t.png')
print(image.shape)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5, 5))
iClose = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)
cv2.imshow('image', image)
cv2.imshow('iClose', iClose)
cv2.waitKey(0)

以上这篇Python-openCV开运算实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python数学形态学实例分析

    本文实例讲述了Python数学形态学.分享给大家供大家参考,具体如下: 一 原始随机图像 1.代码 import numpy as np import matplotlib.pyplot as plt square = np.zeros((32,32))#全0数组 square[10:20,10:20]=1#把其中一部分设置为1 x, y =(32*np.random.random((2,15))).astype(np.int)#随机位置 square[x,y]=1#把随机位置设置为1 plt.

  • python数字图像处理之高级滤波代码详解

    本文提供许多的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级. 该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围. 格式:skimage.filters.rank.autolevel(image, selem) selem表示结构化元素,用于设定滤波器. from skimage im

  • python-opencv在有噪音的情况下提取图像的轮廓实例

    对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i

  • Python-openCV开运算实例

    我就废话不多说了,大家还是直接看代码吧~ #coding=utf-8 import cv2 import numpy as np img=cv2.imread('timg.jpeg',cv2.CV_LOAD_IMAGE_GRAYSCALE) #创建矩形结构单元 g=cv2.getStructuringElement(cv2.MORPH_RECT,(9,9)) #形态学处理,开运算 img_open=cv2.morphologyEx(img,cv2.MORPH_OPEN,g) img_hat=im

  • Python OpenCV形态学运算示例详解

    目录 1. 腐蚀 & 膨胀 1.1什么是腐蚀&膨胀 1.2 腐蚀方法 cv2.erode() 1.3 膨胀方法 cv2.dilate() 2. 开运算 & 闭运算 2.1 简述 2.2 开运算 2.3 闭运算 3. morphologyEx()方法 3.1 morphologyEx()方法 介绍 3.2 梯度运算 3.3 顶帽运算 3.4 黑帽运算 1. 腐蚀 & 膨胀 1.1什么是腐蚀&膨胀 腐蚀&膨胀是图像形态学中的两种核心操作 腐蚀可以描述为是让图像沿

  • Anaconda下配置python+opencv+contribx的实例讲解

    先吐槽一下opencv 3.1.0的版本cv2.sift和surf就不能用了 看解释是说 什么 "non-free",,必须要到opencv_contrib库中才有,而这个库的编译不是一点点的困难 堪称史上最恶 这几天为了装open_contrib反复编译各种报错已经很无奈了. 查遍了各种大神的各种攻略,花积分下载了各种攻略..基本上没有一个能全部解决的办法. 回帖或者其他的 要么只说 ""我解决了 " 并不说方法,要么就是不详不尽 或者比较高深 其实吧

  • python OpenCV GrabCut使用实例解析

    这篇文章主要介绍了python OpenCV GrabCut使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 先上一个效果图: 使用Python3.7+OpenCV 3.x. 需要引入 numpy库. 在图上用鼠标左键和右键标记前景和后景即可. 如果需要重新标记图像,关闭程序重新运行. 以下是具体实现代码 # -*- coding:utf-8 -*- ''' Python: 3.5.7 opencv 3.x 在图上用鼠标左键和右键标记

  • python opencv画局部放大图实例教程

    目录 为什么要画局部放大图? 程序逻辑 程序实例 总结 这项功能的目的是为了方便使用opencv做图像标注工具. 为什么要画局部放大图? 在做图像数据标注时,很难一次就做到精准标注,经常需要微调才能达到比较好的标注效果.如果目标比较小,即使微调也难以做到精准,所以就需要另外一个窗口对标注区域进行局部放大以方便微调. 程序逻辑 本文中标注信息以矩形框作为示例,矩形框是图像标注中最常用到的一种标注信息形态.其他标注信息的设计逻辑雷同. 程序主要逻辑是:鼠标在任意窗口中做的操作都要同步映射到另外一个窗

  • Python OpenCV处理图像之滤镜和图像运算

    本文实例为大家分享了Python OpenCV处理图像之滤镜和图像运算的具体代码,供大家参考,具体内容如下 0x01. 滤镜 喜欢自拍的人肯定都知道滤镜了,下面代码尝试使用一些简单的滤镜,包括图片的平滑处理.灰度化.二值化等: import cv2.cv as cv image=cv.LoadImage('img/lena.jpg', cv.CV_LOAD_IMAGE_COLOR) #Load the image cv.ShowImage("Original", image) grey

  • python+opencv实现车牌定位功能(实例代码)

    写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 对给定的车牌进行车牌识别 实验代码 代码首先贴在这里,仅供参考 源代码 实验代码如下: import cv2 import numpy as np def lpr(filename): img = cv2.imread(filename) # 预处理,包括灰度处理,高斯

  • opencv 形态学变换(开运算,闭运算,梯度运算)

    形态学里把腐蚀和膨胀单独拿了出来,其他操作(保括膨胀和腐蚀的组合操作)都叫形态学变换. opencv里有包:cv2.morphologyEx() morphology :译文 形态学 使用python +opencv讲解 开运算 开运算:对图像先进行腐蚀,然后对腐蚀后的图进行膨胀 morphologyEx 运算结果=cv2.morphologyEx(源图像img,cv2.MORPH_OPEN,卷积核k) cv2.MORPH_OPEN:开运算 import cv2 import numpy as

  • 详解Python图像形态学处理(开运算,闭运算,梯度运算)

    目录 一.图像开运算 二.图像闭运算 三.图像梯度运算 四.总结 这篇文章将继续介绍开运算.闭运算和梯度运算.数学形态学(Mathematical Morphology)是一种应用于图像处理和模式识别领域的新方法.数学形态学(也称图像代数)表示以形态为基础对图像进行分析的数学工具,其基本思想是用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别的目的. 一.图像开运算 开运算一般能平滑图像的轮廓,削弱狭窄部分,去掉较细的突出.闭运算也是平滑图像的轮廓,与开运算相反,它一般熔合

  • python 生成器协程运算实例

    一.yield运行方式 我们定义一个如下的生成器: def put_on(name): print("Hi {}, 货物来了,准备搬到仓库!".format(name)) while True: goods = yield print("货物[%s]已经被%s搬进仓库了."%(goods,name)) p = put_on("bigberg") #输出 G:\python\install\python.exe G:/python/untitled

随机推荐