keras slice layer 层实现方式

注意的地方: keras中每层的输入输出的tensor是张量, 比如Tensor shape是(N, H, W, C), 对于tf后台, channels_last

Define a slice layer using Lamda layer
def slice(x, h1, h2, w1, w2):
 """ Define a tensor slice function
 """
 return x[:, h1:h2, w1:w2, :]

定义完slice function之后,利用lambda layer添加到定义的网络中去

# Add slice layer
slice_1 = Lambda(slice, arguments={'h1': 0, 'h2': 6, 'w1': 0, 'w2': 6})(sliced)
# As for tensorfow backend, Lambda doesn't need output shape argument
slice_2 = Lambda(slice, arguments={'h1': 0, 'h2': 6, 'w1': 6, 'w2': 12})(sliced)

补充知识:tensorflow和keras张量切片(slice)

Notes

想将一个向量 分割成两部分: 操作大概是:

在 TensorFlow 中,用 tf.slice 实现张量切片,Keras 中自定义 Lambda 层实现。

TensorFlow

tf.slice(input_, begin, size, name=None)

input_:tf.tensor,被操作的 tensor

begin:list,各个维度的开始下标

size:list,各个维度上要截多长

import tensorflow as tf

with tf.Session() as sess:
 a = tf.constant([1, 2, 3, 4, 5])
 b = tf.slice(a, [0], [2]) # 第一个维度从 0 开始,截 2 个
 c = tf.slice(a, [2], [3]) # 第一个维度从 2 开始,截 3 个
 print(a.eval())
 print(b.eval())
 print(c.eval())

输出

[1 2 3 4 5]
[1 2]
[3 4 5]

Keras

from keras.layers import Lambda
from keras.models import Sequential
import numpy as np

a = np.array([[1, 2, 3, 4, 5]])
model = Sequential([
 Lambda(lambda a: a[:, :2], input_shape=[5]) # 第二维截前 2 个
])

print(model.predict(a))

输出

[[1. 2.]]

以上这篇keras slice layer 层实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras 多gpu并行运行案例

    一.多张gpu的卡上使用keras 有多张gpu卡时,推荐使用tensorflow 作为后端.使用多张gpu运行model,可以分为两种情况,一是数据并行,二是设备并行. 二.数据并行 数据并行将目标模型在多个设备上各复制一份,并使用每个设备上的复制品处理整个数据集的不同部分数据. 利用multi_gpu_model实现 keras.utils.multi_gpu_model(model, gpus=None, cpu_merge=True, cpu_relocation=False) 具体来说

  • keras多显卡训练方式

    使用keras进行训练,默认使用单显卡,即使设置了os.environ['CUDA_VISIBLE_DEVICES']为两张显卡,也只是占满了显存,再设置tf.GPUOptions(allow_growth=True)之后可以清楚看到,只占用了第一张显卡,第二张显卡完全没用. 要使用多张显卡,需要按如下步骤: (1)import multi_gpu_model函数:from keras.utils import multi_gpu_model (2)在定义好model之后,使用multi_gpu

  • 在keras下实现多个模型的融合方式

    在网上搜过发现关于keras下的模型融合框架其实很简单,奈何网上说了一大堆,这个东西官方文档上就有,自己写了个demo: # Function:基于keras框架下实现,多个独立任务分类 # Writer: PQF # Time: 2019/9/29 import numpy as np from keras.layers import Input, Dense from keras.models import Model import tensorflow as tf # 生成训练集 data

  • keras Lambda自定义层实现数据的切片方式,Lambda传参数

    1.代码如下: import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation,Reshape from keras.layers import merge from keras.utils.visualize_util import plot from keras.layers import Input, Lambda from keras.models impo

  • Keras自定义IOU方式

    我就废话不多说了,大家还是直接看代码吧! def iou(y_true, y_pred, label: int): """ Return the Intersection over Union (IoU) for a given label. Args: y_true: the expected y values as a one-hot y_pred: the predicted y values as a one-hot or softmax output label:

  • keras slice layer 层实现方式

    注意的地方: keras中每层的输入输出的tensor是张量, 比如Tensor shape是(N, H, W, C), 对于tf后台, channels_last Define a slice layer using Lamda layer def slice(x, h1, h2, w1, w2): """ Define a tensor slice function """ return x[:, h1:h2, w1:w2, :] 定义完sl

  • keras得到每层的系数方式

    使用keras搭建好一个模型,训练好,怎么得到每层的系数呢: weights = np.array(model.get_weights()) print(weights) print(weights[0].shape) print(weights[1].shape) 这样系数就被存放到一个np中了. 补充知识:使用keras框架编写的深度模型 输出及每一层的特征可视化 使用训练好的模型进行预测的时候,为分析效果,通常需要对特征提取过程中的特征映射做可视化操作 本文以keras为例,对特征可视化操

  • Keras—embedding嵌入层的用法详解

    最近在工作中进行了NLP的内容,使用的还是Keras中embedding的词嵌入来做的. Keras中embedding层做一下介绍. 中文文档地址:https://keras.io/zh/layers/embeddings/ 参数如下: 其中参数重点有input_dim,output_dim,非必选参数input_length. 初始化方法参数设置后面会单独总结一下. demo使用预训练(使用百度百科(word2vec)的语料库)参考 embedding使用的demo参考: def creat

  • keras 自定义loss层+接受输入实例

    loss函数如何接受输入值 keras封装的比较厉害,官网给的例子写的云里雾里, 在stackoverflow找到了答案 You can wrap the loss function as a inner function and pass your input tensor to it (as commonly done when passing additional arguments to the loss function). def custom_loss_wrapper(input_

  • iOS的CoreAnimation开发框架中的Layer层动画制作解析

    CAAnimation动画体系的介绍 CAAnimation是CoreAnimation框架中执行动画对象的基类,下面有一张图,是我手画的,不太美观,但是可以将与CAAnimation相关的几个动画类的关系表达清楚: 从上图中可以看到,从CAAnimation中继承出三个子类,分别是用于创建属性动画的CAPropertyAnimation,创建转场动画的CATransition和创建组合动画的CAAnimationGroup. 我们就先从根类开始探讨. 1.CAAnimation属性和方法 CA

  • keras模型可视化,层可视化及kernel可视化实例

    keras模型可视化: model: model = Sequential() # input: 100x100 images with 3 channels -> (100, 100, 3) tensors. # this applies 32 convolution filters of size 3x3 each. model.add(ZeroPadding2D((1,1), input_shape=(38, 38, 1))) model.add(Conv2D(32, (3, 3), ac

  • keras 获取某层输出 获取复用层的多次输出实例

    官方文档很全面,搜索功能也很好.但是如果你想单独实现某个功能,根本无从搜寻.于是我写了这个笔记.从功能出发. 两个tensor经过一个layer实例会产生两个输出. a = Input(shape=(280, 256)) b = Input(shape=(280, 256)) lstm = LSTM(32) encoded_a = lstm(a) encoded_b = lstm(b) lstm.output 这个代码有错误,因为最后一行没有指定lstm这个layer实例的那个输出. >> A

  • Keras 使用 Lambda层详解

    我就废话不多说了,大家还是直接看代码吧! from tensorflow.python.keras.models import Sequential, Model from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout, Conv2DTranspose, Lambda, Input, Reshape, Add, Multiply from tensorflow.python.ker

  • keras 获取某层的输入/输出 tensor 尺寸操作

    获取单输入尺寸,该层只被使用了一次. import keras from keras.layers import Input, LSTM, Dense, Conv2D from keras.models import Model a = Input(shape=(32, 32, 3)) b = Input(shape=(64, 64, 3)) conv = Conv2D(16, (3, 3), padding='same') conved_a = conv(a) # 到目前为止只有一个输入,以下

随机推荐