python随机数分布random均匀分布实例

因为概率问题,所以需要测试一下python的随机数分布。到底是平均(均匀)分布,还是正态(高斯)分布。

测试代码如下:

#! /usr/bin/env python
#coding=utf-8

# =================================
# Describe :   测试random随机数分布
# D&P Author By:       常成功
# Create Date:      2017/10/07
# Modify Date:      2017/10/20
# (C) 2012-2017 All rights reserved
# =================================

import random
import time

def test_rnd():
  st_tm = time.time()
  j = 0
  num = 0
  the_list = [1, 2, 3, 4]
  # 计数字典
  temp_dic = {1: 0, 2: 0, 3: 0, 4: 0}
  while 1:
    x = random.choice(the_list)
    temp_dic[x] += 1
    j += 1
    # 跑一千万次
    if j >= 10000000:
      break
  ed_tm = time.time()
  print "Test random.choice()---------------------------:"
  print "loop num: ", j
  print "take time: ", ed_tm-st_tm
  print "temp_dic :", temp_dic

  print "Test random.randint()---------------------------:"
  st_tm = time.time()
  j = 0
  num = 0
  # 计数字典
  temp_dic = {1: 0, 2: 0, 3: 0, 4: 0}
  while 1:
    x = random.randint(1, 4)
    temp_dic[x] += 1
    j += 1
    # 跑一千万次
    if j >= 10000000:
      break
  ed_tm = time.time()
  print "loop num: ", j
  print "take time: ", ed_tm-st_tm
  print "temp_dic :", temp_dic

if __name__ == '__main__':
  test_rnd()

测试结果:

Test random.choice()---------------------------:
loop num: 10000000
take time: 5.86599993706
temp_dic : {1: 2501333, 2: 2500117, 3: 2499406, 4: 2499144}
Test random.randint()---------------------------:
loop num: 10000000
take time: 12.493999958
temp_dic : {1: 2497732, 2: 2501411, 3: 2499372, 4: 2501485}

结果说明:

平均(均匀)分布。

以上这篇python随机数分布random均匀分布实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 如何在python中实现随机选择

    这篇文章主要介绍了如何在python中实现随机选择,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 想从一个序列中随机抽取若干元素,或者想生成几个随机数. random 模块有大量的函数用来产生随机数和随机选择元素.比如,要想从一个序列中随机的抽取一个元素,可以使用random.choice() : >>> import random >>> values = [1, 2, 3, 4, 5, 6] >>>

  • Python随机生成均匀分布在单位圆内的点代码示例

    Python有一随机函数可以产生[0,1)区间内的随机数,但是如果我们想生成随机分布在单位圆上的,那么我们可以首先生成随机分布在单位圆边上的点,然后随机调整每个点距离原点的距离,但是我们发现这个距离不是均匀分布于[0,1]的,而是与扇形的面积相关的 我们使用另外的随机函数生成从[0,1)的随机数r,我们发现r<s0的概率为s0,显而易见,如果r为0,那么对应的距离应该为0,如果是1,对应的距离自然也应该是1,假设我们产生了m个随机数,那么小于s0的随机数应该为s0*m左右,而且这些应该对应于扇形

  • Python随机生成均匀分布在三角形内或者任意多边形内的点

    Python有一随机函数可以产生[0,1)区间内的随机数,基于此函数生成随机分布在任意三角形内的点 由数学知识得知: 几何体的向量表达形式 直线: 线段: 推广到高维 三维平面: 三角形: 注释,v这个向量表示的是在图形上的点的坐标,根据数学知识得知,直线和三维平面内的v构成的点集是放射集,而线段则是凸集, 其余向量是不在同一个点或者同一个平面的点的坐标构成的列向量 那么针对三角形可以写成如下: 我们可以先生成随机的贝塔,然后随机生成阿尔法,然后处理阿尔法,使得点是随机落在三角形内的,这里用的是

  • 详解用python生成随机数的几种方法

    今天学习了用python生成仿真数据的一些基本方法和技巧,写成博客和大家分享一下. 本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码. 1 从给定参数的正态分布中生成随机数 当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了.这里调用了Numpy模块中的random.normal函数

  • python随机数分布random均匀分布实例

    因为概率问题,所以需要测试一下python的随机数分布.到底是平均(均匀)分布,还是正态(高斯)分布. 测试代码如下: #! /usr/bin/env python #coding=utf-8 # ================================= # Describe : 测试random随机数分布 # D&P Author By: 常成功 # Create Date: 2017/10/07 # Modify Date: 2017/10/20 # (C) 2012-2017 A

  • python随机数分布random测试

    因为概率问题,所以需要测试一下python的随机数分布.到底是平均(均匀)分布,还是正态(高斯)分布. 测试代码如下: #! /usr/bin/env python #coding=utf-8 # ================================= # Describe : 测试random随机数分布 # D&P Author By: 常成功 # Create Date: 2017/10/07 # Modify Date: 2017/10/20 # (C) 2012-2017 A

  • python中随机函数random用法实例

    本文实例讲述了python中随机函数random用法.分享给大家供大家参考.具体如下: python中的random模块功能非常强大,可以生成各种随机值 #! python # random import random print random.choice(['apple', 'pear', 'banana']) #从数组中随机选择一个元素 print random.sample(xrange(100), 10) # sampling without replacement print ran

  • Python随机数用法实例详解【基于random模块】

    本文实例讲述了Python随机数用法.分享给大家供大家参考,具体如下: 1. random.seed(int) 给随机数对象一个种子值,用于产生随机序列. 对于同一个种子值的输入,之后产生的随机数序列也一样. 通常是把时间秒数等变化值作为种子值,达到每次运行产生的随机系列都不一样 seed() 省略参数,意味着使用当前系统时间生成随机数 random.seed(10) print random.random() #0.57140259469 random.seed(10) print rando

  • python 随机数使用方法,推导以及字符串,双色球小程序实例

    如下所示: #随机数的使用 import random #导入random random.randint(0,9)#制定随机数0到9 i=random.sample(range(1,34),6)#输出6个随机数,范围是1到34 i.sort()#排序方法,排序时更改原数组,无返回值 sorted(i)#排序函数,排序时不影响原数组,产生新的排序后数据 print('----------------用上述的随机数做一个双色球---------------------') sj=random.sam

  • Python内置random模块生成随机数的方法

    本文我们详细地介绍下两个模块关于生成随机序列的其他使用方法. 随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块. import random 下面介绍下Python内置的random模块的几种生成随机数的方法. 1.random.random()随机生成 0 到 1 之间的浮点数[0.0, 1.0).注意的是返回的随机数可能会是 0 但

  • python生成特定分布数的实例

    我就废话不多说了,直接上代码吧! from scipy.stats import binom, norm, beta, expon import numpy as np import matplotlib.pyplot as plt #泊松分布 x = np.random.poisson(lam=34.7, size=10000) pillar = 100 a = plt.hist(x, bins=pillar, color='black', alpha=0.5) plt.xlabel((u'频

  • Python随机数函数代码实例解析

    这篇文章主要介绍了Python随机数函数代码实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 ''' choice(seq) 从序列的元素中随机选出一个元素 randrange ([start,] stop [,step]) 从指定范围内,在指定步长递增的集合中 获取一个随机数,步长默认为 1 .注:不包含 stop 值 random() 随机生成下一个实数,它在[0,1)范围内. shuffle(lst) 将序列的所有元素随机排序,返回

  • python标准库random模块处理随机数

    目录 前言 1. 常用函数 2. 不常用函数 3. 使用示例 3.1 生成随机密码 前言 random模块实现了各种分布的伪随机数生成器. 伪随机数:人类使用算法等方式,以一个基准(也被称为种子,常用的是时间戳)来构造一系列数字,这些数字的特性符合人们所理解的随机数.一旦算法和种子都确定,产生的随机数序列也是确定的,所以称为伪随机数. 1. 常用函数 常用函数 说明 random.seed(a) 设置初始化随机种子,可输出相同随机数序列:a取整数或浮点数,不设置时默认以系统时间为种子 rando

  • Python随机数random模块使用指南

    random 模块是Python自带的模块,除了生成最简单的随机数以外,还有很多功能. random.random() 用来生成一个0~1之间的随机浮点数,范围[0,10 >>> import random >>> random.random() 0.5038461831828231 random.uniform(a,b) 返回a,b之间的随机浮点数,范围[a,b]或[a,b),取决于四舍五入,a不一定要比b小. >>> random.uniform(

随机推荐