Python实现平行坐标图的绘制(plotly)方式

平行坐标图简介

当数据的维度超过三维时,此时数据的可视化就变得不再那么简单。为解决高维数据的可视化问题,我们可以使用平行坐标图。以下关于平行坐标图的解释引自百度百科:为了克服传统的笛卡尔直角坐标系容易耗尽空间、 难以表达三维以上数据的问题, 平行坐标图将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置。为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线。所以平行坐标图的实质是将m维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到二维平面上的一条曲线。在N条平行的线的背景下,(一般这N条线都竖直且等距),一个在高维空间的点可以被表示为一条拐点在N条平行坐标轴的折线,在第K个坐标轴上的位置就表示这个点在第K个维的值。

绘制平行坐标图

本文主要介绍两种利用Python绘制平行坐标图的方法,分别是利用pandas包绘制和利用plotly包绘制(默认已安装pandas包和plotly包)。

利用pandas实现平行坐标图的绘制

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from pandas.plotting import parallel_coordinates

data = sns.load_dataset('iris')

fig,axes = plt.subplots()
parallel_coordinates(data,'species',ax=axes)
fig.savefig('parallel.png')

绘制的平行坐标图如下所示:

从上图可以看到x轴上变量共用一个y坐标轴,此时因sepal_length、sepal_width、petal_length以及petal_width这四个变量的值得范围相近,利用这种方式作出的共用y轴的平行坐标图有着很好的可视化效果;但假如sepal_length、sepal_width、petal_length以及petal_width这些变量的值的范围相差较大时,这种共用y轴的平行坐标图就不再适用,此时我们需要的是y轴独立的平行坐标图。下面介绍的另一种方法实现的就是y轴独立的平行坐标图。

利用plotly实现平行坐标图的绘制

plotly绘图有两种模式,一种是online模式,另一种是offline模式。本文使用的是offline模式,且是在jupyter notebook中进行绘图。

首先熟悉一下plotly的绘图方式:

import plotly as py
import plotly.graph_objs as go
py.offline.init_notebook_mode(connected=True) # 初始化设置

py.offline.iplot({
 "data": [go.Parcoords(
  line = dict(color = 'blue'),
  dimensions = list([
   dict(range = [1,5],
     constraintrange = [1,2],
     label = 'A', values = [1,4]),
   dict(range = [1.5,5],
     tickvals = [1.5,3,4.5],
     label = 'B', values = [3,1.5]),
   dict(range = [1,5],
     tickvals = [1,2,4,5],
     label = 'C', values = [2,4],
     ticktext = ['text 1', 'text 2', 'text 3', 'text 4']),
   dict(range = [1,5],
     label = 'D', values = [4,2])
  ])
 )],
 "layout": go.Layout(title="My first parallel coordinates")
})

绘制图形如下所示:

绘制鸢尾花数据的平行坐标图:

df = sns.load_dataset('iris')
df['species_id'] = df['species'].map({'setosa':1,'versicolor':2,'virginica':3}) #用于颜色映射

py.offline.iplot({
 "data": [go.Parcoords(
  line = dict(color = df['species_id'],
     colorscale = [[0,'#D7C16B'],[0.5,'#23D8C3'],[1,'#F3F10F']]),
  dimensions = list([
   dict(range = [2,8],
    constraintrange = [4,8],
    label = 'Sepal Length', values = df['sepal_length']),
   dict(range = [1,6],
    label = 'Sepal Width', values = df['sepal_width']),
   dict(range = [0,8],
    label = 'Petal Length', values = df['petal_length']),
   dict(range = [0,4],
    label = 'Petal Width', values = df['petal_width'])
  ])
 )],
 "layout": go.Layout(title='Iris parallel coordinates plot')
})

绘制的图形如下所示:

注:关于plotly.offline.iplot、go.Parcoords以及go.Layout的用法可以利用help关键字查看相关帮助文档,与pyecharts不同,plotly提供的帮助文档非常详细。

以上这篇Python实现平行坐标图的绘制(plotly)方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python使用Plotly绘图工具绘制散点图、线形图

    今天在研究Plotly绘制散点图的方法,供大家参考,具体内容如下 使用Python3.6 + Plotly Plotly版本2.0.0 在开始之前先说说,还需要安装库Numpy,安装方法在我的另一篇博客中有写到:python3.6下Numpy库下载与安装图文教程 因为Plotly没有自己独立的线性图形函数,所以把线性图形与散点图形全部用一个函数实现 这个函数是Scatter函数 下面举几个简单的例子 先画一个纯散点图,代码如下: import plotly import plotly.graph

  • python使用Plotly绘图工具绘制柱状图

    本文实例为大家分享了python使用Plotly绘图工具绘制柱状图的具体代码,供大家参考,具体内容如下 使用Plotly绘制基本的柱状图,需要用到的函数是graph_objs 中 Bar函数 通过参数,可以设置柱状图的样式. 通过barmod进行设置可以绘制出不同类型的柱状图出来. 我们先来实现一个简单的柱状图: # -*- coding: utf-8 -*- import plotly as py import plotly.graph_objs as go pyplt = py.offlin

  • Python使用plotly绘制数据图表的方法

    导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

  • 详解Python使用Plotly绘图工具,绘制甘特图

    今天来讲一下如何使用Python 的绘图工具Plotly来绘制甘特图的方法 甘特图大家应该了解熟悉,就是通过条形来显示项目的进度.时间安排等相关情况的. 我们今天来学习一下,如何使用ployly来绘制甘特图 绘制甘特图的函数为Plotly.figure_factoryz中create_gantt方法 通过参数事件Task,开始Start,结束Finish的时间的数据来绘制甘特图 import plotly as py import plotly.figure_factory as ff pypl

  • Python实现平行坐标图的绘制(plotly)方式

    平行坐标图简介 当数据的维度超过三维时,此时数据的可视化就变得不再那么简单.为解决高维数据的可视化问题,我们可以使用平行坐标图.以下关于平行坐标图的解释引自百度百科:为了克服传统的笛卡尔直角坐标系容易耗尽空间. 难以表达三维以上数据的问题, 平行坐标图将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置.为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线.所以平行坐标图的实质是将m维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到二维平面上的

  • Python实现平行坐标图的两种方法小结

    平行坐标图,一种数据可视化的方式.以多个垂直平行的坐标轴表示多个维度,以维度上的刻度表示在该属性上对应值,相连而得的一个折线表示一个样本,以不同颜色区分类别. 但是很可惜,才疏学浅,没办法在Python里实现不同颜色来区分不同的类别.如果对此比较在意的大神可以不要往下看了......... 上图是一个基于iris数据集所画的一个平行坐标图. 隔开隔开.......................................隔开隔开 不多扯了,下面正式上代码 方法一.基于pyecharts第三

  • Python饼状图的绘制实例

    import numpy as np import matplotlib.pyplot as plt labels = 'A', 'B', 'C', 'D' fracs = [15, 30.55, 44.44, 10] explode = [0, 0, 0, 0] # 0.1 凸出这部分, plt.axes(aspect=1) # set this , Figure is round, otherwise it is an ellipse # autopct ,show percet plt.p

  • Python绘制散点密度图的三种方式详解

    目录 方式一 方式二 方式三 方式一 import matplotlib.pyplot as plt import numpy as np from scipy.stats import gaussian_kde from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import rcParams config = {"font.family":'Times New Roman',"fo

  • python 实现在一张图中绘制一个小的子图方法

    有时候为了直观展现图的信息,可以在大图中添加小子图的方式进行数据分析,如下图所示: 具体的代码如下:该图连接了数据库,当然重要的不是数据展示,而是添加子图的方法. import matplotlib.pyplot as plt import MySQLdb as mdb import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes from mpl_toolkits.axes_grid1.inset

  • Python可视化学习之seaborn绘制矩阵图详解

    目录 本文内容速览 1.绘图数据准备 2.seaborn.pairplot 加上分类变量 修改调色盘 x,y轴方向选取相同子集 x,y轴方向选取不同子集 非对角线散点图加趋势线 对角线上的四个图绘制方式 只显示网格下三角图形 图形外观设置 3.seaborn.PairGrid(更灵活的绘制矩阵图) 每个子图绘制同类型的图 对角线和非对角线分别绘制不同类型图 对角线上方.对角线.对角线下方分别绘制不同类型图 其它一些参数修改 本文内容速览 1.绘图数据准备 还是使用鸢尾花iris数据集 #导入本帖

  • Python数据分析之使用matplotlib绘制折线图、柱状图和柱线混合图

    目录 matplotlib介绍 matplotlib绘制折线图 matplotlib绘制柱状图 matplotlib绘制柱线混合图 总结 matplotlib介绍 Matplotlib 是 Python 的绘图库. 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案. 它也可以和图形工具包一起使用,如 PyQt 和 wxPython. 安装Matplotlib库命令:在cmd命令窗口输入pip install matplotlib. matplotlib绘制折线图 1.绘

  • 详解Python+Pyecharts实现漏斗图的绘制

    目录 任务描述 相关知识 编程要求 测试说明 代码 任务描述 本关任务:利用 PyEcharts 绘制一个基本的漏斗图. 相关知识 为了完成本关任务,你需要掌握: 1. Python 的基本语法 2. PyEcharts 漏斗图的相关内容 导入图表类型 与日历图的操作类似,在文件的开始我们首先要将所需包导入,如右侧编辑器中代码所示. 导入漏斗图的语句为 from pyecharts.charts import Funnel 为了方便构造数据,我们还导入了 PyEcharts 提供的虚拟数据包,如

  • Python基于Matplotlib库简单绘制折线图的方法示例

    本文实例讲述了Python基于Matplotlib库简单绘制折线图的方法.分享给大家供大家参考,具体如下: Matplotlib画折线图,有一些离散点,想看看这些点的变动趋势: import matplotlib.pyplot as plt x1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] y1=[30,31,31,32,33,35,35,40,47,62,99,186,480] x2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1

  • Python箱型图绘制与特征值获取过程解析

    这篇文章主要介绍了Python箱型图绘制与特征值获取过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较 如何利用Python绘制箱型图 需要的import的包 import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties import numpy as np import

随机推荐