pandas DataFrame 数据选取,修改,切片的实现

在刚开始使用pandas DataFrame的时候,对于数据的选取,修改和切片经常困惑,这里总结了一些常用的操作。

pandas主要提供了三种属性用来选取行/列数据:

属性名 属性
ix 根据整数索引或者行标签选取数据
iloc 根据位置的整数索引选取数据
loc 根据行标签选取数据

先初始化一个DateFrame做例子

import numpy as np
import pandas as pd
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])

df是这样的

In [35]: df
Out[35]:
   name  gender age
0  Snow   M    22
1  Tyrion  M    32
2  Sansa  F    18
3  Arya   F    14

如果每列都有column name,比如这里是:

In [42]: df.columns
Out[42]: Index(['name', 'gender', 'age'], dtype='object')

1. df['column_name'] ,df[row_start_index, row_end_index] 选取指定整列数据

df['name']
df['gender']
df[['name','gender']] #选取多列,多列名字要放在list里
df[0:] #第0行及之后的行,相当于df的全部数据,注意冒号是必须的
df[:2] #第2行之前的数据(不含第2行)
df[0:1] #第0行
df[1:3] #第1行到第2行(不含第3行)
df[-1:] #最后一行
df[-3:-1] #倒数第3行到倒数第1行(不包含最后1行即倒数第1行,这里有点烦躁,因为从前数时从第0行开始,从后数就是-1行开始,毕竟没有-0)

2. loc,在知道列名字的情况下,df.loc[index,column] 选取指定行,列的数据

loc也提供了五种参数形式

input example(摘自官方文档) output
行标签 df.loc[‘viper'] 选取viper那一行
行标签数组 df.loc[[‘viper', ‘sidewinder']] 选取行标签为viper、sidewinder
行标签切片 df.loc[‘cobra':‘viper', ‘max_speed'] 选取从cobra到viper行的max_speed列
布尔值数组 df.loc[[False, False, True]]
函数 df.loc[df[‘shield'] > 6, [‘max_speed']] 选取shield列大于6的那一行的max_speed数据

注意 df.loc[df[‘one']>10]这样的写法是可以正常选出one列大于10的数据

# df.loc[index, column_name],选取指定行和列的数据
df.loc[0,'name'] # 'Snow'
df.loc[0:2, ['name','age']]  #选取第0行到第2行,name列和age列的数据, 注意这里的行选取是包含下标的。
df.loc[[2,3],['name','age']]  #选取指定的第2行和第3行,name和age列的数据
df.loc[df['gender']=='M','name']  #选取gender列是M,name列的数据
df.loc[df['gender']=='M',['name','age']] #选取gender列是M,name和age列的数据

3. iloc,在column name特别长或者index是时间序列等各种不方便输入的情况下,可以用iloc (i = index), iloc完全用数字来定位 iloc[row_index, column_index]

iloc提供了五种参数形式

input example output
整数(行索引) df.iloc[5] 选取第6行数据
整数数组 df.iloc[[1,3,5]] 选取第2,4,6行数据
整数切片 df.iloc[1:3] 选取2~4行数据(不包含第4行数据)
布尔值数组 df.iloc[[True,False,True] 选取第1,3行数据
函数 df.iloc[(df[‘one']>10).tolist()] 选取'one'这列大于10的那一行数据

注意:iloc接受有返回值的函数作为参数,但要保证函数返回的是整数/整数list,布尔值/布尔list

如果直接运行 df.iloc[df[‘one']>10]

则会报错 NotImplementedError: iLocation based boolean indexing on an integer type is not available

因为df[‘one'] > 10 返回的是 series类型的数据

除此之外,还可以进行组合切片

input example output
整数(行索引) df.iloc[5,1] 选取第6行,第2列的数据
整数数组 df.iloc[[1,3],[1,2]] 选取第2,4行;2,3列的数据
整数切片 df.iloc[1:3,1:3] 选取第2,3行;2,3列的数据
布尔值数组 df.iloc[[True,True,False],[True,False,True]] 选取第1,2行;1,3列的数据

要注意的是,我们用df[参数]也可以进行切片,但这种方式容易引起chained indexing 问题。除此之外,**df[lable1][lable2]**的操作是线性的,对lable2的选取是在df[lable1]的基础上进行,速度相对较慢。所以在对数据进行切片的时候尽量使用iloc这类的方法

df.iloc[0,0] #第0行第0列的数据,'Snow'
df.iloc[1,2] #第1行第2列的数据,32
df.iloc[[1,3],0:2] #第1行和第3行,从第0列到第2列(不包含第2列)的数据
df.iloc[1:3,[1,2] #第1行到第3行(不包含第3行),第1列和第2列的数据

4. ix, ix很强大,loc和iloc的功能都能做到 ix[row_index, column_index]

ix虽然强大,然而已经不再被推荐,因为在最新版的pandas里面,ix已经成为deprecated。(https://github.com/pandas-dev/pandas/issues/14218

大概是因为可以混合label和position导致了很多用户问题和bug。

所以,用label就用loc,用position就用iloc。

df.ix[0,0] #第0行第0列的数据,'Snow'
df.ix[0,[1,2]] #第0行,第1列和第2列的数据
df.ix[0:2,[1,2]] #第0行到第2行(包含第3行),第1列和第2列的数据
df.ix[1,0:2] #第1行,从第0列到第2列(不包含第2列)的数据

切片时,iloc行不含下标上限,loc,ix行包含,列iloc和ix都不含列下标上限。(设计者的缺憾。。。)

到此这篇关于pandas DataFrame 数据选取,修改,切片的实现的文章就介绍到这了,更多相关pandas  数据选取,修改,切片内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python pandas dataframe 行列选择,切片操作方法

    SQL中的select是根据列的名称来选取:Pandas则更为灵活,不但可根据列名称选取,还可以根据列所在的position(数字,在第几行第几列,注意pandas行列的position是从0开始)选取.相关函数如下: 1)loc,基于列label,可选取特定行(根据行index): 2)iloc,基于行/列的position: 3)at,根据指定行index及列label,快速定位DataFrame的元素: 4)iat,与at类似,不同的是根据position来定位的: 5)ix,为loc与i

  • python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现

    相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响... 到今天终于完全搞清楚了!!! 先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用

  • pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]

    1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2

  • pandas 选取行和列数据的方法详解

    前言 本文介绍在 pandas 中如何读取数据行列的方法.数据由行和列组成,在数据库中,一般行被称作记录 (record),列被称作字段 (field).回顾一下我们对记录和字段的获取方式:一般情况下,字段根据名称获取,记录根据筛选条件获取.比如获取 student_id 和 studnent_name 两个字段:记录筛选,比如 sales_amount 大于 10000 的所有记录.对于熟悉 SQL 语句的人来说,就是下面的语句: select student_id, student_name

  • Python Pandas中根据列的值选取多行数据

    Pandas中根据列的值选取多行数据 # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的

  • pandas数据清洗,排序,索引设置,数据选取方法

    此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释 Pandas数据格式 Series DataFrame:每个column就是一个Series 基础属性shape,index,columns,values,dtypes,describe(),head(),tail() 统计属性Series: count(),value_counts(),前者是统计总数,后者统计各自value的总数 df.isnull() df的空值为True df.notnull() df的非空值为T

  • 基于pandas数据样本行列选取的方法

    注:以下代码是基于python3.5.0编写的 import pandas food_info = pandas.read_csv("food_info.csv") # ------------------选取数据样本的第一行-------------------- print(food_info.loc[0]) #------------------选取数据样本的3到6行---------------------- print(food_info.loc[3:6]) #-------

  • pandas 数据索引与选取的实现方法

    我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列.区域.单元格. 其对应使用的方法如下: 一. 行,列 --> df[] 二. 区域   --> df.loc[], df.iloc[], df.ix[] 三. 单元格 --> df.at[], df.iat[] 下面开始练习: import numpy as np import pandas as pd df = pd.DataFrame(np.random.randn(6,4), index=list('abcdef')

  • pandas DataFrame 数据选取,修改,切片的实现

    在刚开始使用pandas DataFrame的时候,对于数据的选取,修改和切片经常困惑,这里总结了一些常用的操作. pandas主要提供了三种属性用来选取行/列数据: 属性名 属性 ix 根据整数索引或者行标签选取数据 iloc 根据位置的整数索引选取数据 loc 根据行标签选取数据 先初始化一个DateFrame做例子 import numpy as np import pandas as pd df = pd.DataFrame([['Snow','M',22],['Tyrion','M',

  • Pandas DataFrame数据修改值的方法

    dfmi.iloc[:,1] pandas要修改值先需要了解DataFrame的一些知识 此处参照的是pandas的官方文档 When setting values in a pandas object, care must be taken to avoid what is calledchained indexing. Here is an example. 要修改pandas--DataFrame中的值要注意避免在链式索引上得到的DataFrame的值 这里创建了一个DataFrame d

  • pandas DataFrame数据转为list的方法

    首先使用np.array()函数把DataFrame转化为np.ndarray(),再利用tolist()函数把np.ndarray()转为list,示例代码如下: # -*- coding:utf-8-*- import numpy as np import pandas as pd data_x = pd.read_csv("E:/Tianchi/result/features.csv",usecols=[2,3,4])#pd.dataframe data_y = pd.read_

  • pandas.DataFrame删除/选取含有特定数值的行或列实例

    1.删除/选取某列含有特殊数值的行 import pandas as pd import numpy as np a=np.array([[1,2,3],[4,5,6],[7,8,9]]) df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC')) print(df1) df2=df1.copy() #删除/选取某列含有特定数值的行 #df1=df1[df1['A'].isin([1])] #df1[df1['A'].

  • Python pandas DataFrame数据拼接方法

    目录 前言 DataFrame数据拼接方法一:使用.append()方法. DataFrame数据拼接方法二:使用.concat()方法. 补充:Python同时合并多个DataFrame 总结 前言 在pandas模块中,通常我们都需要对类型为DataFrame的数据进行操作,其中最为常见的操作便是拼接了.比如我们将两个Excel表格中的数据读入,随后拼接完成后保存进一个新的Excel表格文件中.之前查找了相关的博客, 发现网络上鱼龙混杂.有些代码完全无法执行,为了提高效率,这里做一个详细地记

  • Pandas DataFrame数据的更改、插入新增的列和行的方法

    一.更改DataFrame的某些值 1.更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据. 2.需要注意的是,数据更改直接针对DataFrame原数据更改,操作无法撤销,如果做出更改,需要对更改条件做确认或对数据进行备份. 代码: import pandas as pd df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['

  • Python数据分析之 Pandas Dataframe修改和删除及查询操作

    目录 一.查询操作 元素的查询 二.修改操作 行列索引的修改 元素值的修改 三.行和列的删除操作 一.查询操作 可以使用Dataframe的index属性和columns属性获取行.列索引. import pandas as pd data = {"name": ["Alice", "Bob", "Cindy", "David"], "age": [25, 23, 28, 24], &q

  • Python数据分析之 Pandas Dataframe条件筛选遍历详情

    目录 一.条件筛选 二.Dataframe数据遍历 for...in...语句 iteritems()方法 iterrows()方法 itertuples()方法 一.条件筛选 查询Pandas Dataframe数据时,经常会筛选出符合条件的数据,接下来介绍一下具体的使用方式. 示例Dataframe如下: 单条件筛选,例如查询gender为woman的数据: df[df["gender"]=="woman"] # 或 df.loc[df["gender

随机推荐