python计算导数并绘图的实例

我就废话不多说了,直接上代码吧!

import math
import numpy as np
import matplotlib.pyplot as plt
from sympy import * #用于求导积分等科学计算

def dif(left,right,step):#求导 左右区间以及间隔
 x,y = symbols('x y')#引入x y变量
 expr = pow(x,5)#计算表达式
 x_value = [] #save x value
 y_value = [] #save x f(x) value
 y_value_dif = [] #save x f(x)_dot value
 y_value_dif2 = [] #save x f(x)_dot2 value
 y_value_dif3 = [] #save x f(x)_dot3 value
 y_value_dif4 = [] #save x f(x)_dot4 value
 #print(expand(exp(I*x), complex=True))#将复指数展开成实部虚部形式
 expr_dif = diff(expr,x,1)
 expr_dif2 = diff(expr,x,2)
 expr_dif3 = diff(expr,x,3)
 expr_dif4 = diff(expr,x,4)
 for i in np.arange(left,right,step):
  x_value.append(i)
  y_value.append(expr.subs('x',i))#将i值代入表达式
  y_value_dif.append(expr_dif.subs('x',i))#将i值代入求导表达式
  y_value_dif2.append(expr_dif2.subs('x',i))#将i值代入2阶求导表达式
  y_value_dif3.append(expr_dif3.subs('x',i))#将i值代入3阶求导表达式
  y_value_dif4.append(expr_dif4.subs('x',i))#将i值代入4阶求导表达式
 draw_plot_set()#设置画图格式
 plt.plot(x_value,y_value,"b-",linewidth=1,label='f(x)='+str(expr)) #画图
 plt.plot(x_value,y_value_dif,"r-",linewidth=1,label='f(x)_prim') #画图
 plt.plot(x_value,y_value_dif2,"y-",linewidth=1,label='f(x)_prim2') #画图
 plt.plot(x_value,y_value_dif3,"g-",linewidth=1,label='f(x)_prim3') #画图
 plt.plot(x_value,y_value_dif4,"b-",linewidth=1,label='f(x)_prim4') #画图

 plt.legend()#显示图例
 plt.show()#显示图像

def draw_plot_set():#设置画图格式
 plt.figure()
 ax = plt.gca()
 #改变坐标轴位置
 ax.spines['right'].set_color('none')#删除原来轴
 ax.spines['top'].set_color('none')#删除原来轴
 ax.xaxis.set_ticks_position('bottom')#在0点处增加轴
 ax.spines['bottom'].set_position(('data',0))
 ax.yaxis.set_ticks_position('left')#在0点处增加轴
 ax.spines['left'].set_position(('data',0))
 #设置坐标名
 plt.ylabel('f(x)')
 plt.xlabel('x')

 plt.grid(True)#打开网格

if __name__ == '__main__':
 dif(-5,5,0.01)

补充拓展:python利用sympy库对某个函数求导,numpy库使用该求导结果计算的程序

在python数据处理过程中,我们经常会遇见这样一种情况。需要对一个函数表达式求偏导,并将具体数值代入导数式。

而python中通常可用于函数求导的函数是sympy库中的diff()函数。

但他通常所求得的导数只是一个符号表达式。不能直接带入数据使用。

如下例:

import sympy as sp
import numpy as np
x,y = sp.symbols('x y')
z = sp.sin(2*sp.pi*x+2*y/5)
zx = sp.diff(z,x)
zy = sp.diff(z,y)
print(zx)
print(zy)

其输出为:

2*pi*cos(2*pi*x + 2*y/5)
2*cos(2*pi*x + 2*y/5)/5

那么该如何解决这个问题呢?

对x,y使用evalf()函数分别赋值后,用float进行类型转换后,才能利用numpy进行数值计算。

如下例:

import sympy as sp
import numpy as np
x,y = sp.symbols('x y')
z = sp.sin(2*sp.pi*x+2*y/5)
zx = sp.diff(z,x)
zy = sp.diff(z,y)
x1 = 10
y1 = 5
z_x1 = float(zx.evalf(subs={x:x1,y:y1}))
z_y1 = float(zy.evalf(subs={x:x1,y:y1}))
print(z_x1)
print(z_y1)

其输出结果:

-2.61472768902227
-0.16645873461885696

那如果我的x或y不是单一的值呢?而是一个数组。

我们可以利用一个循环来完成。

如下例:

import sympy as sp
import numpy as np
x,y = sp.symbols('x y')
z = sp.sin(2*sp.pi*x+2*y/5)
zx = sp.diff(z,x)
zy = sp.diff(z,y)
x_array = np.linspace(-5, 5, 10)
y_array = np.linspace(-5, 5, 10)
temp_x = []#先定义一个用于存储x偏导的空列表
temp_y = []#先定义一个用于存储y偏导的空列表
for i in range(10):
  z_x = float(zx.evalf(subs={x:x_array[i],y:y_array[i]}))
  temp_x.append(z_x)#将计算得到的偏导值一一添加到列表中
  z_y = float(zy.evalf(subs={x:x_array[i],y:y_array[i]}))
  temp_y.append(z_y)
zx_array = np.array(temp_x)#将列表转换为数组
zy_array = np.array(temp_y)
print(zx_array)
print(zy_array)

输出结果为:

[-2.61472769 4.11163864 6.02946289 0.89585862 -5.2854481 -5.2854481
 0.89585862 6.02946289 4.11163864 -2.61472769]
[-0.16645873 0.26175505 0.38384753 0.05703213 -0.33648208 -0.33648208
 0.05703213 0.38384753 0.26175505 -0.16645873]

由此便实现了由sympy得到求导结果,到numpy库进行数值计算。

以上这篇python计算导数并绘图的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python计算波峰波谷值的方法(极值点)

    python求极值点主要用到scipy库. 1. 首先可先选择一个函数或者拟合一个函数,这里选择拟合数据:np.polyfit import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy import signal #滤波等 xxx = np.arange(0, 1000) yyy = np.sin(xxx*np.pi/180) z1 = np.polyfit(xxx, yyy, 7) # 用

  • python计算导数并绘图的实例

    我就废话不多说了,直接上代码吧! import math import numpy as np import matplotlib.pyplot as plt from sympy import * #用于求导积分等科学计算 def dif(left,right,step):#求导 左右区间以及间隔 x,y = symbols('x y')#引入x y变量 expr = pow(x,5)#计算表达式 x_value = [] #save x value y_value = [] #save x

  • python 计算文件的md5值实例

    较小文件处理方法: import hashlib import os def get_md5_01(file_path): md5 = None if os.path.isfile(file_path): f = open(file_path,'rb') md5_obj = hashlib.md5() md5_obj.update(f.read()) hash_code = md5_obj.hexdigest() f.close() md5 = str(hash_code).lower() re

  • python计算无向图节点度的实例代码

    废话不多说了,直接上代码吧: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述:统计图中的每个节点的度,并生成度序列 #问题分析:利用networkx.代码如下: import networkx as nx G=nx.random_graphs.barabasi_albert_graph(1000,3)#生成n=1000,m=3的无标度的图 print ("某个节点的度:",G.d

  • python 读取数据库并绘图的实例

    1.安装相应的库文件 sudo apt-get install python-mysqldb 2.数据库操作 import MySQLdb db = MySQLdb.connect("localhost", "root", "pwd", "dbname", charset='utf8' ) 数据库的查询 #加入参数表示查询返回的是一个键值数组而不是默认的元组 cursor = db.cursor(cursorclass = M

  • python计算二维矩形IOU实例

    计算交并比:交的面积除以并的面积. 要求矩形框的长和宽应该平行于图片框.不然不能用这样的公式计算. 原理,从一维上来理解:两条红线的距离之和减去黑色线之间的距离就是相交的距离.两条红线之和很容易算,两条黑线之间的距离就是最小的起点到到最大的末点,最小的起点好算,最大的末点就是两点加上各自长度之后的最大值.这就算出了一维的情况,二维的情况一样,计算二次而已. def iou(rect1,rect2): ''' 计算两个矩形的交并比 :param rect1:第一个矩形框.表示为x,y,w,h,其中

  • python+matplotlib实现动态绘制图片实例代码(交互式绘图)

    本文研究的主要是python+matplotlib实现动态绘制图片(交互式绘图)的相关内容,具体介绍和实现代码如下所示. 最近在研究动态障碍物避障算法,在Python语言进行算法仿真时需要实时显示障碍物和运动物的当前位置和轨迹,利用Anaconda的Python打包集合,在Spyder中使用Python3.5语言和matplotlib实现路径的动态显示和交互式绘图(和Matlab功能类似). Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统

  • Python计算斗牛游戏概率算法实例分析

    本文实例讲述了Python计算斗牛游戏概率算法.分享给大家供大家参考,具体如下: 过年回家,都会约上亲朋好友聚聚会,会上经常会打麻将,斗地主,斗牛.在这些游戏中,斗牛是最受欢迎的,因为可以很多人一起玩,而且没有技术含量,都是看运气(专业术语是概率). 斗牛的玩法是: 1. 把牌中的JQK都拿出来 2. 每个人发5张牌 3. 如果5张牌中任意三张加在一起是10的 倍数,就是有牛.剩下两张牌的和的10的余数就是牛数. 牌的大小: 4条 > 3条 > 牛十 > 牛九 > -- >

  • python计算牛顿迭代多项式实例分析

    本文实例讲述了python计算牛顿迭代多项式的方法.分享给大家供大家参考.具体实现方法如下: ''' p = evalPoly(a,xData,x). Evaluates Newton's polynomial p at x. The coefficient vector 'a' can be computed by the function 'coeffts'. a = coeffts(xData,yData). Computes the coefficients of Newton's po

  • python计算auc指标实例

    1.安装scikit-learn 1.1Scikit-learn 依赖 Python (>= 2.6 or >= 3.3), NumPy (>= 1.6.1), SciPy (>= 0.9). 分别查看上述三个依赖的版本, python -V 结果:Python 2.7.3 python -c 'import scipy; print scipy.version.version' scipy版本结果:0.9.0 python -c "import numpy; print

  • python计算列表内各元素的个数实例

    如下所示: list = [1,2,3,4,5,6,7,5,4,3,2,12] set = set(list) dict = {} for item in set: dict.update({item:list.count(item)}) 以上这篇python计算列表内各元素的个数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

随机推荐