python自动化操作之动态验证码、滑动验证码的降噪和识别

目录
  • 前言
  • 一、动态验证码
  • 二、滑动验证码
  • 三、验证码的降噪
  • 四、验证码的识别
  • 总结

前言

python对动态验证码、滑动验证码的降噪和识别,在各种自动化操作中,我们经常要遇到沿跳过验证码的操作,而对于验证码的降噪和识别,的确困然了很多的人。这里我们就详细讲解一下不同验证码的降噪和识别。

一、动态验证码

  • 动态验证码是服务端生成的,点击一次,就会更换一次,这就会造成很多人在识别的时候,会发现验证码一直过期
  • 这是因为,如果你是把图片下载下来,进行识别的话,其实在下载的这个请求中,其实相当于点击了一次,这个验证码的内容已经被更换了
  • 最好的方法是,打开这个页面后,将页面进行截图,然后定位到验证码的位置,将验证码从截图上面裁剪下来进行识别,这样就不会造成多次请求,验证码更换的情况了

from selenium import webdriver
from PIL import Image

# 实例化浏览器
driver = webdriver.Chrome()

# 最大化窗口
driver.maximize_window()

# 打开登陆页面
driver.get(# 你的url地址)

# 保存页面截图
driver.get_screenshot_as_file('./screen.png')

# 定位验证码的位置
location = driver.find_element_by_id('login_yzm_img').location
size = driver.find_element_by_id('login_yzm_img').size
left = location['x']
top =  location['y']
right = location['x'] + size['width']
bottom = location['y'] + size['height']

# 裁剪保存
img = Image.open('./screen.png').crop((left,top,right,bottom))
img.save('./code.png')

driver.quit()

二、滑动验证码

  • 滑动验证码,通常是两个滑块图片,将小图片滑动到大图片上的缺口位置,进行重合,即可通过验证
  • 对于滑动验证码,我们就要识别大图上面的缺口位置,然后让小滑块滑动响应的位置距离,即可
  • 而为了让你滑动起来,更加的拟人化,你需要一个滑动的路径,模拟人为去滑动,而不是机器去滑动

# 下载两个滑块
bg = self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[2]/img[1]').get_attribute('src')
slider = self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[2]/img[2]').get_attribute('src')

request.urlretrieve(bg, os.getcwd() + '/bg.png')
request.urlretrieve(slider, os.getcwd() + '/slider.png')

# 获取两个滑块偏移量方法
def getGap(self, sliderImage, bgImage):
    '''
    Get the gap distance
    :param sliderImage: the image of slider
    :param bgImage: the image of background
    :return: int
    '''
    bgImageInfo = cv2.imread(bgImage, 0)
    bgWidth, bgHeight = bgImageInfo.shape[::-1]
    bgRgb = cv2.imread(bgImage)
    bgGray = cv2.cvtColor(bgRgb, cv2.COLOR_BGR2GRAY)

    slider = cv2.imread(sliderImage, 0)
    sliderWidth, sliderHeight = slider.shape[::-1]

    res = cv2.matchTemplate(bgGray, slider, cv2.TM_CCOEFF)
    a, b, c, d = cv2.minMaxLoc(res)
    # print(a,b,c,d)
    # 正常如下即可
    # return c[0] if abs(a) >= abs(b) else d[0]
    # 但是头条显示验证码的框跟验证码本身的像素不一致,所以需要根据比例计算
    if abs(a) >= abs(b):
        return c[0] * bgWidth / (bgWidth - sliderWidth)
    else:
        return d[0] * bgWidth / (bgWidth - sliderWidth)

# 移动路径方法
def getTrack(self, distance):
    '''
    Get the track by the distance
    :param distance: the distance of gap
    :return: list
    '''
    # 移动轨迹
    track = []
    # 当前位移
    current = 0
    # 减速阈值
    mid = distance * 4 / 5
    # 计算间隔
    t = 0.2
    # 初速度
    v = 0

    while current < distance:
        if current < mid:
            # 加速度为正2
            a = 2
        else:
            # 加速度为负3
            a = -3
        # 初速度v0
        v0 = v
        # 当前速度v = v0 + at
        v = v0 + a * t
        # 移动距离x = v0t + 1/2 * a * t^2
        move = v0 * t + 1 / 2 * a * t * t
        # 当前位移
        current += move
        # 加入轨迹
        track.append(round(move))
    return track

# 滑动到缺口位置
def moveToGap(self, track):
    '''
    Drag the mouse to gap
    :param track: the track of mouse
    :return: None
    '''
    ActionChains(self.driver).click_and_hold(self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[3]/div[2]/div[2]/div')).perform()
    while track:
        x = random.choice(track)
        ActionChains(self.driver).move_by_offset(xoffset=x, yoffset=0).perform()
        track.remove(x)
    time.sleep(0.5)
    ActionChains(self.driver).release().perform()

三、验证码的降噪

验证码的降噪,只是为了处理验证码图像上的多余的线条和干扰线,让你后期识别更加的准确,提高识别的准确度

第一步:可以进行灰度转化

img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('min_gray',gray)

cv2.waitKey(0)
cv2.destroyAllWindows()

第二步: 二值化处理

import cv2

img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY)

cv2.imshow('threshold',gray2)

cv2.waitKey(0)
cv2.destroyAllWindows()

第三步:噪点过滤

import cv2

img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY)

def remove_noise(img, k=4):
    img2 = img.copy()

    #     img处理数据,k过滤条件
    w, h = img2.shape

    def get_neighbors(img3, r, c):
        count = 0
        for i in [r - 1, r, r + 1]:
            for j in [c - 1, c, c + 1]:
                if img3[i, j] > 10:  # 纯白色
                    count += 1
        return count

    #     两层for循环判断所有的点
    for x in range(w):
        for y in range(h):
            if x == 0 or y == 0 or x == w - 1 or y == h - 1:
                img2[x, y] = 255
            else:
                n = get_neighbors(img2, x, y)  # 获取邻居数量,纯白色的邻居
                if n > k:
                    img2[x, y] = 255
    return img2

result = remove_noise(gray2)
cv2.imshow('8neighbors', result)

cv2.waitKey(0)
cv2.destroyAllWindows()

四、验证码的识别

通常我们会使用tesserocr识别验证码,但是这个库有很大的局限性,识别率低,即时降噪效果很好,有很少的线条,也会不准确,这种识别方式并不十分推荐

所以我们一般会使用第三方的接口进行识别,比如阿里的图片识别、腾讯也都是有的

这些第三方接口需要自己接入识别接口

#识别降噪后的图片
code = tesserocr.image_to_text(nrImg)

#消除空白字符
code.strip()

#打印
print(code)

总结

到此这篇关于python自动化操作之动态验证码、滑动验证码的降噪和识别的文章就介绍到这了,更多相关python动态验证码降噪和识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python爬虫之自动登录与验证码识别

    在用爬虫爬取网站数据时,有些站点的一些关键数据的获取需要使用账号登录,这里可以使用requests发送登录请求,并用Session对象来自动处理相关Cookie. 另外在登录时,有些网站有时会要求输入验证码,比较简单的验证码可以直接用pytesser来识别,复杂的验证码可以依据相应的特征自己采集数据训练分类器. 以CSDN网站的登录为例,这里用Python的requests库与pytesser库写了一个登录函数.如果需要输入验证码,函数会首先下载验证码到本地,然后用pytesser识别验证码后登

  • 使用python 对验证码图片进行降噪处理

    首先贴一张验证码上来做案例: 第一步先通过二值化处理把干扰线去掉: from PIL import Image # 二值化处理 def two_value(): for i in range(1,5): # 打开文件夹中的图片 image=Image.open('./Img/'+str(i)+'.jpg') # 灰度图 lim=image.convert('L') # 灰度阈值设为165,低于这个值的点全部填白色 threshold=165 table=[] for j in range(256

  • python验证码识别教程之利用滴水算法分割图片

    滴水算法概述 滴水算法是一种用于分割手写粘连字符的算法,与以往的直线式地分割不同 ,它模拟水滴的滚动,通过水滴的滚动路径来分割字符,可以解决直线切割造成的过分分割问题. 引言 之前提过对于有粘连的字符可以使用滴水算法来解决分割,但智商捉急的我实在是领悟不了这个算法的精髓,幸好有小伙伴已经实现相关代码. 我对上面的代码进行了一些小修改,同时升级为python3的代码. 还是以这张图片为例: 在以前的我们已经知道这种简单的粘连可以通过控制阈值来实现分割,这里我们使用滴水算法. 首先使用之前文章中介绍

  • python对验证码降噪的实现示例代码

    前言: 最近写爬虫会经常遇到一些验证码识别的问题,现如今的验证码已经是五花八门,刚开始的验证码就是简单的对生成的验证码图片进行一些干扰,但是随着计算机视觉库的 发展壮大,可以轻松解决简单的验证码识别问题,于是一些变态 的验证码就出来了,什么滑动验证码,当然这个也是比较好解决的,用python的selenium库就可以破解一些滑动验证码.可是还出现了一些语音类,点击类的验证码.爬虫与反爬的较量确实越来越精彩了,也挺有趣的!最终促进的是整个行业技术的发展与进步. 今天分享一个可以解决简单验证码识别的

  • python简单验证码识别的实现方法

    利用SVM向量机进行4位数字验证码识别 主要是思路和步骤如下: 一,素材收集 检查环境是否包含有相应的库: 1.在cmd中,通过 pip list命令查看安装的库 2.再使用pip installRequests 安装Requests库 3.再次使用pip list 命令 4.利用python获取验证码资源 编写代码:_DownloadPic.py #!/usr/bin/nev python3 #利用python从站点下载验证码图片 import requests ## 1.在 http://w

  • python验证码识别教程之灰度处理、二值化、降噪与tesserocr识别

    前言 写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字.字母的组合,国内也有使用汉字的.在这个基础上增加噪点.干扰线.变形.重叠.不同字体颜色等方法来增加识别难度. 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果

  • 详解Python验证码识别

    以前写过一个刷校内网的人气的工具,Java的(以后再也不行Java程序了),里面用到了验证码识别,那段代码不是我自己写的:-) 校内的验证是完全单色没有任何干挠的验证码,识别起来比较容易,不过从那段代码中可以看到基本的验证码识别方式.这几天在写一个程序的时候需要识别验证码,因为程序是Python写的自然打算用Python进行验证码的识别. 以前没用Python处理过图像,不太了解PIL(Python Image Library)的用法,这几天看了看PIL,发现它太强大了,简直和ImageMagi

  • python验证码识别的实例详解

    其实关于验证码识别涉及很多方面的内容,入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足,对这感兴趣的朋友们下面跟着小编一起来学习学习吧. 依赖 sudo apt-get install python-imaging sudo apt-get install tesseract-ocr pip install pytesseract 利用google ocr来识别验证码 from PIL import Image import pytesseract image = Image

  • python验证码识别教程之利用投影法、连通域法分割图片

    前言 今天这篇文章主要记录一下如何切分验证码,用到的主要库就是Pillow和Linux下的图像处理工具GIMP.首先假设一个固定位置和宽度.无粘连.无干扰的例子学习一下如何使用Pillow来切割图片. 使用GIMP打开图片后,按 加号 放大图片,然后点击View->Show Grid来显示网格线: 其中,每个正方形边长为10像素,所以数字1切割坐标为左20.上20.右40.下70.以此类推可以知道剩下3个数字的切割位置. 代码如下: from PIL import Image p = Image

  • Python验证码识别处理实例

    一.准备工作与代码实例 (1)安装PIL:下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去, (2)pytesser:下载解压后直接放C:\Python27\Lib\site-packages(根据你安装的Python路径而不同),同时,新建一个pytheeer.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样! (3)Te

随机推荐