Python 数据可视化之Matplotlib详解

目录
  • 使用的数据库
    • tips 数据库
  • Matplotlib
    • 散点图
    • 折线图
    • 条形图
    • 直方图
  • 总结

在深入研究这些库之前,首先,我们需要一个数据库来绘制数据。我们将在本完整教程中使用 tips database。让我们讨论一下这个数据库的简介。

使用的数据库

tips 数据库

tips 数据库是20世纪90年代初期顾客在餐厅的两个半月的小费记录。它包含 6 列,例如 total_bill、tip、sex、smoker、day、time、size。

您可以从这里下载 tips 数据库

例子:

import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")
# 打印前 10 行
print(data.head(10))

输出:

Matplotlib

Matplotlib 是一个易于使用的低级数据可视化库,它构建在 NumPy 数组上。它由散点图、线图、直方图等各种图组成。 Matplotlib 提供了很大的灵活性。

要安装此库,请在终端中输入以下命令。

pip install matplotlib

安装 Matplotlib 后,让我们看看使用这个库最常用的绘图。

散点图

散点图用于观察变量之间的关系,并用点来表示它们之间的关系。matplotlib 库中的scatter()方法用于绘制散点图。

例子:

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据库
data = pd.read_csv("tips.csv")
# day 对 tip 的散点图
plt.scatter(data['day'], data['tip'])
# 为 Plot 添加标题
plt.title("Scatter Plot")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
plt.show()

输出:

如果我们可以添加颜色并更改点的大小,则此图会更有意义。我们可以通过分别使用 scatter 函数的c 和 s参数来做到这一点。我们还可以使用colorbar()方法显示颜色条。

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据库
data = pd.read_csv("tips.csv")
# day对tip的散点图
plt.scatter(data['day'], data['tip'], c=data['size'],
			s=data['total_bill'])
# 为Plot添加标题
plt.title("Scatter Plot")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
plt.colorbar()
plt.show()

折线图

折线图用于表示不同轴上两个数据 X 和 Y 之间的关系。它是使用plot() 函数绘制的。让我们看看下面的例子。

例子:

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据库
data = pd.read_csv("tips.csv")
# day对tip的折线图
plt.plot(data['tip'])
plt.plot(data['size'])
# 为Plot添加标题
plt.title("Scatter Plot")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
plt.show()

输出:

条形图

柱状图或叫条形图是表示与长度和高度的矩形条数据的类别是正比于它们所代表的值的图。它可以使用bar()方法创建。

例子:

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据库
data = pd.read_csv("tips.csv")
# day对tip的条形图
plt.bar(data['day'], data['tip'])
plt.title("Bar Chart")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
# 添加图例
plt.show()

输出:

直方图

直方图基本上是用来在一些基团的形式来表示数据。它是一种条形图,其中 X 轴表示 bin 范围,而 Y 轴提供有关频率的信息。的HIST()函数用于计算和创建直方图。在直方图中,如果我们传递分类数据,那么它将自动计算该数据的频率,即每个值出现的频率。

例子:

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据库
data = pd.read_csv("tips.csv")
# total_bill直方图
plt.hist(data['total_bill'])
plt.title("Histogram")
# 添加图例
plt.show()

输出:

以上是关于 Matplotlib 使用 Python 进行数据可视化的全部示例,下一节我们来谈谈 Seaborn

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • 浅谈哪个Python库才最适合做数据可视化

    数据可视化是任何探索性数据分析或报告的关键步骤,它可以让我们一眼就能洞察数据集.目前有许多非常好的商业智能工具,比如Tableau.googledatastudio和PowerBI,它们可以让我们轻松地创建图形. 然而,数据分析师或数据科学家还是习惯使用 Python 在 Jupyter notebook 上创建可视化效果.目前最流行的用于数据可视化的 Python 库:Matplotlib.Seaborn.plotlyexpress和Altair.每个可视化库都有自己的特点,没有完美的可视化库

  • python数据可视化 – 利用Bokeh和Bottle.py在网页上展示你的数据

    目录 1. 文章重点和项目介绍 2. 数据集研究和图表准备 2.1 导入数据集 2.2 绘制图表 图表1:2019年上海,北京,深圳三地的每天AQI变化曲线 图表2:2019年上海,北京,深圳三地的每月平均AQI对比 图表3:2017年到2019年北京每月平均AQI对比 3. Bottle网页应用 3.1 文件夹结构 3.2 路由 3.3 模板实现 3.4 启动网页服务 4. 将Bokeh和Bottle集成在一起 4.1 模板修改 4.2 Python代码集成 5. 部署应用到Heroku 6.

  • Python 数据可视化之Seaborn详解

    目录 安装 散点图 线图 条形图 直方图 总结 安装 要安装 seaborn,请在终端中输入以下命令. pip install seaborn Seaborn 建立在 Matplotlib 之上,因此它也可以与 Matplotlib 一起使用.一起使用 Matplotlib 和 Seaborn 是一个非常简单的过程.我们只需要像之前一样调用 Seaborn Plotting 函数,然后就可以使用 Matplotlib 的自定义函数了. 注意: Seaborn 加载了提示.虹膜等数据集,但在本教程

  • Python 数据可视化之Bokeh详解

    目录 安装 散点图 折线图 条形图 交互式数据可视化 Interactive Legends 添加小部件 按钮 复选框 单选按钮 总结 安装 要安装此类型,请在终端中输入以下命令. pip install bokeh 散点图 散点图中散景可以使用绘图模块的散射()方法被绘制.这里分别传递 x 和 y 坐标. 例子: # 导入模块 from bokeh.plotting import figure, output_file, show from bokeh.palettes import magm

  • Python 数据可视化之Matplotlib详解

    目录 使用的数据库 tips 数据库 Matplotlib 散点图 折线图 条形图 直方图 总结 在深入研究这些库之前,首先,我们需要一个数据库来绘制数据.我们将在本完整教程中使用 tips database.让我们讨论一下这个数据库的简介. 使用的数据库 tips 数据库 tips 数据库是20世纪90年代初期顾客在餐厅的两个半月的小费记录.它包含 6 列,例如 total_bill.tip.sex.smoker.day.time.size. 您可以从这里下载 tips 数据库. 例子: im

  • Python数据可视化绘图实例详解

    目录 利用可视化探索图表 1.数据可视化与探索图 2.常见的图表实例 数据探索实战分享 1.2013年美国社区调查 2.波士顿房屋数据集 利用可视化探索图表 1.数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据.图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义.用户通过探索图(Exploratory Graph)可以了解数据的特性.寻找数据的趋势.降低数据的理解门槛. 2.常见的图表实例 本章主要采用 Pandas 的方式来画图,而不是使用 Matpl

  • 基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在画布中创建一个绘图区.在绘图区上画几条线.给图像添加文字说明等.下面我们就通过实例代码来领略一下他的魅力. import matplotlib.pyplot as plt plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() 上图是我们通

  • Python Matplotlib数据可视化模块使用详解

    目录 前言 1 matplotlib 开发环境搭建 2 绘制基础 2.1 绘制直线 2.2 绘制折线 2.3 设置标签文字和线条粗细 2.4 绘制一元二次方程的曲线 y=x^2 2.5 绘制正弦曲线和余弦曲线 3 绘制散点图 4 绘制柱状图 5 绘制饼状图 6 绘制直方图 7 绘制等高线图 8 绘制三维图 总结 本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍. 通过阅读本文,你可以: 了解什么是 Matplotlib 掌握如何用 Matplotlib

  • Python数据可视化之matplotlib.pyplot绘图的基本参数详解

    目录 1.matplotlib简介 2.图形组成元素的函数用法 2.1. figure():背景颜色 2.2 xlim()和 ylim():设置 x,y 轴的数值显示范围 2.3 xlabel()和 ylabel():设置 x,y 轴的标签文本 2.4 grid():绘制刻度线的网格线 2.5 axhline():绘制平行于 x 轴额度水平参考线 2.6 axvspan():绘制垂直于 x 轴的参考区域 2.7 xticks(),yticks() 2.8 annotate():添加图形内容细节的

  • python数据分析工具之 matplotlib详解

    不论是数据挖掘还是数学建模,都免不了数据可视化的问题.对于 Python 来说,matplotlib 是最著名的绘图库,它主要用于二维绘图,当然也可以进行简单的三维绘图.它不但提供了一整套和 Matlab 相似但更为丰富的命令,让我们可以非常快捷地用 python 可视化数据. matplotlib基础 # 安装 pip install matplotlib 两种绘图风格: MATLAB风格: 基本函数是 plot,分别取 x,y 的值,然后取到坐标(x,y)后,对不同的连续点进行连线. 面向对

  • Python数据存储之 h5py详解

    1.Python数据存储(压缩) (1)numpy.save , numpy.savez , scipy.io.savemat numpy和scipy内建的数据存储方式. (2)cPickle + gzip cPickle是pickle内建的数据存储方式,gzip是常用的文件压缩模块. (3)h5py h5py是对HDF5文件格式进行读写的python包,关于h5py更多介绍与安装,参考官方网站 关于HDF5,参考官方网站.: 一个HDF5文件就是一个由两种基本数据对象(groups and d

  • python数据可视化之matplotlib.pyplot基础以及折线图

    不论是数据挖掘还是数据建模,都免不了数据可视化的问题.对于Python来说,Matplotlib是最著名的绘图库,它主要用于二维绘图,当然它也可以进行简单的三维绘图(基于spyder). - 模块引用 import matplotlib.pyplot as plt #引用画图库中的pyplot模块 -折线条图 语法 import matplotlib.pyplot as plt data=[1,2,3,4,5,4,2,4,6,7] #随便创建了一个数据 plt.plot(data) #引用画图库

随机推荐