PyTorch 使用torchvision进行图片数据增广

目录
  • 使用torchvision来进行图片的数据增广
  • 1. 读取图片
  • 2. 图片增广
    • 2.1 图片水平翻转
    • 2.2 图片上下翻转
    • 2.3 图片旋转
    • 2.4 中心裁切
    • 2.5 随机裁切
    • 2.6 随机裁切并修改尺寸
    • 2. 7 修改图片颜色
  • 3. 训练数据集加载

使用torchvision来进行图片的数据增广

数据增强就是增强一个已有数据集,使得有更多的多样性。对于图片数据来说,就是改变图片的颜色和形状等等。比如常见的:

左右翻转,对于大多数数据集都可以使用;
上下翻转:部分数据集不适合使用;
图片切割:从图片中切割出一个固定的形状,

  • 随机高宽比(e.g. [3/4, 4/3)
  • 随机大小(e.g. [8%, 100%])
  • 随机位置

改变图片的颜色

  • 改变色调,饱和度,明亮度(e.g. [0.5, 1.5])

1. 读取图片

加载相关包。

import torch
import torchvision
import matplotlib

from torch import nn
from torchvision import transforms
from PIL import Image
from IPython import display
from matplotlib import pyplot as plt

选取一个狗的图片作为示例:

def set_figsize(figsize=(3.5, 2.5)):

    display.set_matplotlib_formats('svg')
    plt.rcParams['figure.figsize'] = figsize    

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
    r"""
    展示一列图片
    img: Image对象的列表
    """
    figsize = (num_cols * scale, num_rows * scale)
    fig, axes = plt.subplots(num_rows, num_cols, figsize=figsize)

    axes = axes.flatten()

    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            ax.imshow(img.numpy())
        else:
            ax.imshow(img)

        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
        ax.get_xaxis().set_label('x')
        if titles:
            ax.set_title(titles[i])

    return axes

set_figsize()
img = Image.open('img/dog1.jpg')
plt.imshow(img);

2. 图片增广

def apply(img, aug, num_rows=2, num_clos=4, scale=1.5):
    # 对图片应用图片增广
    # img: Image object
    # aug: 增广操作
    Y = [aug(img) for _ in range(num_clos * num_rows)]
    d2l.show_images(Y, num_rows, num_clos, scale=scale)

2.1 图片水平翻转

class RandomHorizontalFlip(torch.nn.modules.module.Module):
	r'''
	RandomHorizontalFlip(p=0.5)
	给图片一个一定概率的水平翻转操作,如果是Tensor,要求形状为[..., H, W]
	Args:
		p: float, 图片翻转的概率,默认值0.5
	'''
	def __init__(self, p=0.5):
		pass

示例。可以看到,有一般的几率对图片进行了水平翻转。

aug = transforms.RandomHorizontalFlip(0.5)
apply(img, aug)

2.2 图片上下翻转

class RandomVerticalFlip(torch.nn.modules.module.Module):
	r'''
	RandomVerticalFlip(p=0.5)
	给图片一个一定概率的上下翻转操作,如果是Tensor,要求形状为[..., H, W]
	Args:
		p: float, 图片翻转的概率,默认值0.5
	'''
	def __init__(self, p=0.5):
		pass

示例。可以看到,有一般的几率对图片进行了上下翻转。

aug = transforms.RandomHorizontalFlip(0.5)
apply(img, aug)

2.3 图片旋转

class RandomRotation(torch.nn.modules.module.Module):
    r'''
    将图片旋转一定角度。
    '''
    def __init__(self,
                 degrees,
                 interpolation=<InterpolationMode.NEAREST: 'nearest'>,
                 expand=False,
                 center=None,
                 fill=0):
        r"""
        Args:
            degrees: number or sequence, 可选择的角度范围(min, max),
                        如果是一个数字,则范围是(-degrees, +degrees)
            interpolation: Default is ``InterpolationMode.NEAREST``.
            expand: bool, 如果为True,则扩展输出,使其足够大来容纳整个旋转的图像
                          如果为False, 将输出图像与输入图像的大小相同。
            center: sequence, 以左上角为原点的旋转中心,默认是图片中心。
            fill: sequence or number: 旋转图像外部区域的像素填充值,默认0。
        """
        pass

    def forward(self, input):
        r"""
        Args:
            img: PIL Image or Tensor, 被旋转的图片。
        Return:
            PIL Image or Tensor: 旋转后的图片。
        """
        pass

使用实例:

aug = transforms.RandomRotation(degrees=(-90, 90), fill=128)
apply(img, aug)

2.4 中心裁切

class CenterCrop(torch.nn.modules.module.Module):
    r'''
    中心裁切。

    '''
    def __init__(self, size):
        r"""
        Args:
           size: sequence or int, 裁切尺寸(H, W), 如果是int,尺寸为(size, size)
        """
        pass

    def forward(self, input):
        r"""
        Args:
            img: PIL Image or Tensor, 被裁切的图片。
        Return:
            PIL Image or Tensor: 裁切后的图片。
        """
        pass

实例:

aug = transforms.CenterCrop((200, 300))
apply(img, aug)

2.5 随机裁切

class RandomCrop(torch.nn.modules.module.Module):
    r'''
    随机裁切。

    '''
    def __init__(self, size):
        r"""
        Args:
           size: sequence or int, 裁切尺寸(H, W), 如果是int,尺寸为(size, size)
           padding: sequence or int, 填充大小,
                如果值为 a , 四周填充a个像素
                如果值为 (a, b), 左右填充a,上下填充b
                如果值为 (a, b, c, d), 左上右下依次填充
           pad_if_need: bool, 如果裁切尺寸大于原图片,则填充
           fill: number or str or tuple: 填充像素的值
           padding_mode: str, 填充类型。
                   `constant`: 使用 fill 填充
                   `edge`: 使用边缘的最后一个值填充在图像边缘。
                   `reflect`: 镜像填充
        """
        pass

    def forward(self, input):
        r"""
        Args:
            img: PIL Image or Tensor, 被裁切的图片。
        Return:
            PIL Image or Tensor: 裁切后的图片。
        """
        pass

示例:

aug = transforms.RandomCrop((200, 300))
apply(img, aug)

输出:

2.6 随机裁切并修改尺寸

class RandomResizedCrop(torch.nn.modules.module.Module):
    r'''
    随机裁切, 并重设尺寸。

    '''
    def __init__(self, size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333)):
        r"""
        Args:
           size: sequence or int, 需要输出的尺寸(H, W), 如果是int,尺寸为(size, size)
           scale: tuple of float, 原始图片中裁切大小,百分比
           ratio: tuple of float, resize前的裁切的纵横比范围
        """
        pass

    def forward(self, input):
        r"""
        Args:
            img: PIL Image or Tensor, 被裁切的图片。
        Return:
            PIL Image or Tensor: 输出的图片。
        """
        pass

示例:

aug = transforms.RandomResizedCrop((200, 200), scale=(0.2, 1))
apply(img, aug)

2. 7 修改图片颜色

class ColorJitter(torch.nn.modules.module.Module):
    r'''
    修改颜色。

    '''
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        r"""
        Args:
           brightness: float or tuple of float (min, max), 亮度的偏移幅度,范围[max(0, 1 - brightness), 1 + brightness]
           contrast: float or tuple of float (min, max), 对比度偏移幅度,范围[max(0, 1 - contrast), 1 + contrast]
           saturation: float or tuple of float (min, max), 饱和度偏移幅度,范围[max(0, 1 - saturation), 1 + saturation]
           hue: float or tuple of float (min, max), 色相偏移幅度,范围[-hue, hue]
        """
        pass

    def forward(self, input):
        r"""
        Args:
            img: PIL Image or Tensor, 输入的图片。
        Return:
            PIL Image or Tensor: 输出的图片。
        """
        pass

示例:

aug = transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, aug)

3. 训练数据集加载

train_augs = transforms.Compose([transforms.RandomHorizontalFlip(),
                                 torchvision.transforms.ToTensor()])
dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,
                                           transform=augs, download=True)

到此这篇关于PyTorch 使用torchvision进行图片数据增广的文章就介绍到这了,更多相关PyTorch torchvision 图片增广内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch torchvision.ImageFolder的用法介绍

    torchvision.datasets Datasets 拥有以下API: __getitem__ __len__ Datasets都是 torch.utils.data.Dataset的子类,所以,他们也可以通过torch.utils.data.DataLoader使用多线程(python的多进程). 举例说明: torch.utils.data.DataLoader(coco_cap, batch_size=args.batchSize, shuffle=True, num_workers

  • 关于PyTorch源码解读之torchvision.models

    PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets.torchvision.models.torchvision.transforms. 这3个子包的具体介绍可以参考官网: http://pytorch.org/docs/master/torchvision/index.html. 具体代码可以参考github: https://github.com/pytorch/vision/tree/master/

  • window10下pytorch和torchvision CPU版本安装教程

    1.环境 python3.5 Anaconda 4.2.0 2.pytorch安装 pip3 install https://download.pytorch.org/whl/cpu/torch-1.1.0-cp35-cp35m-win_amd64.whl -i https://pypi.tuna.tsinghua.edu.cn/ 3.torchvision安装 pip3 install https://download.pytorch.org/whl/cpu/torchvision-0.3.0

  • anaconda安装pytorch1.7.1和torchvision0.8.2的方法(亲测可用)

    1. 创建一个新的环境 打开Anaconda Navigator,找不到的win10左下角输入一下就能找到了,如下图. 这里通过列表下面的create按钮可以创建一个新的环境,这里我将新环境起名为torch,右面列表中是我安装好的包,刚创建的时候没有这么多. 2. 从pytorch官网得到获取包的命令 打开Anaconda Prompt,输入activate 刚刚创建的环境名可以切换到刚刚创建的环境.这里我用的是下面的命令,你需要根据自己创建的环境名修改相应的激活名称. activate tor

  • 深入理解Pytorch微调torchvision模型

    目录 一.简介 二.导入相关包 三.数据输入 四.辅助函数 1.模型训练和验证 2.设置模型参数的'.requires_grad属性' 一.简介 在本小节,深入探讨如何对torchvision进行微调和特征提取.所有模型都已经预先在1000类的magenet数据集上训练完成. 本节将深入介绍如何使用几个现代的CNN架构,并将直观展示如何微调任意的PyTorch模型. 本节将执行两种类型的迁移学习: 微调:从预训练模型开始,更新我们新任务的所有模型参数,实质上是重新训练整个模型. 特征提取:从预训

  • Pytoch之torchvision.transforms图像变换实例

    transforms.CenterCrop(size) 将给定的PIL.Image进行中心切割,得到给定的size,size可以是tuple,(target_height, target_width).size也可以是一个Integer,在这种情况下,切出来的图片的形状是正方形. size可以为int,也可以为float #定义中心切割 centerCrop = transforms.CenterCrop((img.size[0]/2,img.size[1]/2)) imgccrop = cen

  • PyTorch 使用torchvision进行图片数据增广

    目录 使用torchvision来进行图片的数据增广 1. 读取图片 2. 图片增广 2.1 图片水平翻转 2.2 图片上下翻转 2.3 图片旋转 2.4 中心裁切 2.5 随机裁切 2.6 随机裁切并修改尺寸 2. 7 修改图片颜色 3. 训练数据集加载 使用torchvision来进行图片的数据增广 数据增强就是增强一个已有数据集,使得有更多的多样性.对于图片数据来说,就是改变图片的颜色和形状等等.比如常见的: 左右翻转,对于大多数数据集都可以使用:上下翻转:部分数据集不适合使用:图片切割:

  • pytorch cnn 识别手写的字实现自建图片数据

    本文主要介绍了pytorch cnn 识别手写的字实现自建图片数据,分享给大家,具体如下: # library # standard library import os # third-party library import torch import torch.nn as nn from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader import torchvision impo

  • pytorch 准备、训练和测试自己的图片数据的方法

    大部分的pytorch入门教程,都是使用torchvision里面的数据进行训练和测试.如果我们是自己的图片数据,又该怎么做呢? 一.我的数据 我在学习的时候,使用的是fashion-mnist.这个数据比较小,我的电脑没有GPU,还能吃得消.关于fashion-mnist数据,可以百度,也可以点此 了解一下,数据就像这个样子: 下载地址:https://github.com/zalandoresearch/fashion-mnist 但是下载下来是一种二进制文件,并不是图片,因此我先转换成了图

  • pytorch 把图片数据转化成tensor的操作

    摘要: 在图像识别当中,一般步骤是先读取图片,然后把图片数据转化成tensor格式,再输送到网络中去.本文将介绍如何把图片转换成tensor. 一.数据转换 把图片转成成torch的tensor数据,一般采用函数:torchvision.transforms.通过一个例子说明,先用opencv读取一张图片,然后在转换:注意一点是:opencv储存图片的格式和torch的储存方式不一样,opencv储存图片格式是(H,W,C),而torch储存的格式是(C,H,W). import torchvi

  • pytorch深度神经网络入门准备自己的图片数据

    目录 正文 一.所有图片放在一个文件夹内 二.不同类别的图片放在不同的文件夹内 正文 图片数据一般有两种情况: 1.所有图片放在一个文件夹内,另外有一个txt文件显示标签. 2.不同类别的图片放在不同的文件夹内,文件夹就是图片的类别. 针对这两种不同的情况,数据集的准备也不相同,第一种情况可以自定义一个Dataset,第二种情况直接调用torchvision.datasets.ImageFolder来处理.下面分别进行说明: 一.所有图片放在一个文件夹内 这里以mnist数据集的10000个te

  • pytorch制作自己的LMDB数据操作示例

    本文实例讲述了pytorch制作自己的LMDB数据操作.分享给大家供大家参考,具体如下: 前言 记录下pytorch里如何使用lmdb的code,自用 制作部分的Code code就是ASTER里数据制作部分的代码改了点,aster_train.txt里面就算图片的完整路径每行一个,图片同目录下有同名的txt,里面记着jpg的标签 import os import lmdb # install lmdb by "pip install lmdb" import cv2 import n

  • pytorch 数据处理:定义自己的数据集合实例

    数据处理 版本1 #数据处理 import os import torch from torch.utils import data from PIL import Image import numpy as np #定义自己的数据集合 class DogCat(data.Dataset): def __init__(self,root): #所有图片的绝对路径 imgs=os.listdir(root) self.imgs=[os.path.join(root,k) for k in imgs

  • pytorch 批次遍历数据集打印数据的例子

    我就废话不多说了,直接上代码吧! from os import listdir import os from time import time import torch.utils.data as data import torchvision.transforms as transforms from torch.utils.data import DataLoader def printProgressBar(iteration, total, prefix='', suffix='', d

  • pytorch finetuning 自己的图片进行训练操作

    一.pytorch finetuning 自己的图片进行训练 这种读取图片的方式用的是torch自带的 ImageFolder,读取的文件夹必须在一个大的子文件下,按类别归好类. 就像我现在要区分三个类别. #perpare data set #train data train_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/trainData',transform=transforms.Compose( [ transforms.Sca

随机推荐