C++实现线程池的简单方法示例

最近自己写了一个线程池。

总的来说,线程池就是有一个任务队列,一个线程队列,线程队列不断地去取任务队列中的任务来执行,当任务队列中为空时,线程阻塞等待新的任务添加过来。

我是用queue来存放任务,vector存放thread*,然后用condition_variable 来设置线程阻塞和唤醒。

下面直接上代码吧。

线程池类头文件Thread_Pool.h

/********************************************
   线程池头文件

  Author:十面埋伏但莫慌
  Time:2020/05/03

*********************************************/
#pragma once
#ifndef _THREAD_POOL_H_
#define _THREAD_POOL_H_
#include<thread>
#include<queue>
#include<mutex>
#include<atomic>
#include<vector>
#include<condition_variable>

typedef std::function<void()> Func;//定义线程执行函数类型,方便后面编码使用。
//任务类
class Task {
public:
 Task() {}
 ~Task() {}
 int push(Func func);//添加任务;
 int getTaskNum();//获得当前队列中的任务数;
 Func pop();//取出待执行的任务;
public:
 std::mutex mx;//锁;
private:

 std::queue<Func> tasks;//任务队列
};
//线程池类
class Thread_Pool {
public:
 Thread_Pool() :IsStart(false) {}
 ~Thread_Pool();
 int addTasks(Func tasks);//添加任务;
 void start();//开启线程池;
 void stop();//关闭线程池;
 void run();//线程工作函数;
 int getTaskNum();//获得当前队列中的任务数;
private:
 static const int maxThreadNum = 3;//最大线程数为3;

 std::condition_variable cond;//条件量;
 std::vector<std::thread*> threads;//线程向量;
 std::atomic<bool> IsStart;//原子变量,判断线程池是否运行;
 Task tasks;//任务变量;
};
#endif

然后是线程池类成员函数定义文件Thread_Pool.cpp

/********************************************
   线程池CPP文件

  Author:十面埋伏但莫慌
  Time:2020/05/03

*********************************************/
#include"Thread_Pool.h"
#include<iostream>
int Task::push(Func func) {
 std::unique_lock<std::mutex> lock(mx);
 try {
  tasks.emplace(func);
 }
 catch (std::exception e)
 {
  throw e;
  return -1;
 }
 return 0;
}
int Task::getTaskNum()
{
 return tasks.size();
}
Func Task::pop() {
 std::unique_lock<std::mutex> lock(mx);
 Func temp;
 if (tasks.empty())
  return temp;
 else
 {
  temp = tasks.front();
  tasks.pop();
  return temp;
 }
}
int Thread_Pool::addTasks(Func func)
{

 int ret = tasks.push(func);
 cond.notify_one();
 return ret;
}
void Thread_Pool::start() {
 if (!IsStart) {
  IsStart = true;
  for (int i = 0; i < maxThreadNum; i++)
  {
   threads.emplace_back(new std::thread(std::bind(&Thread_Pool::run,this)));
  }

 }
}
void Thread_Pool::run()
{
 while (IsStart)
 {
  Func f;
  if (tasks.getTaskNum() == 0 && IsStart)
  {
   std::unique_lock<std::mutex> lock(tasks.mx);
   cond.wait(lock);
  }
  if (tasks.getTaskNum() != 0 && IsStart)
  {
   f = tasks.pop();
   if(f)
    f();
  }

 }
}
int Thread_Pool::getTaskNum() {
 return tasks.getTaskNum();
}
void Thread_Pool::stop() {

  IsStart = false;
  cond.notify_all();
  for (auto T : threads) {
   std::cout << "线程 " << T->get_id() << " 已停止。" << std::endl;
   T->join();
   if (T != nullptr)
   {
    delete T;
    T = nullptr;
   }
  }
 std::cout << "所有线程已停止。" << std::endl;
}
Thread_Pool::~Thread_Pool() {
 if (IsStart)
 {
  stop();
 }
}

最后是测试用的main.cpp

#include<iostream>
#include"Thread_Pool.h"
using namespace std;
void string_out_one() {
 cout << "One!" << endl;
}
void string_out_two() {
 cout << "Two!" << endl;
}
void string_out_three() {
 cout << "Three!" << endl;
}
int main() {
 {
  Thread_Pool Pool;
  try {
   Pool.start();
  }
  catch (std::exception e)
  {
   throw e;
   cout << "线程池创建失败。" << endl;
  }
  for (int i = 0; i < 50000 ;)
  {
   if (Pool.getTaskNum() < 1000) {
    Pool.addTasks(string_out_one);
    Pool.addTasks(string_out_two);
    Pool.addTasks(string_out_three);
    std::cout << i++ << std::endl;
   }
  }
  getchar();
 }
 getchar();
 return 0;
}

执行的效果如下:

线程唤醒和阻塞的逻辑就是在线程工作函数run函数中,判断队列是否为空,若为空则设置锁并调用condition变量的wait函数,释放这个线程中的锁并阻塞线程,等待任务队列中新的任务添加进来后,

condition变量通过notify_one()随机唤醒一个在wait的线程,取出队列中的任务执行。

写这个线程池的过程中碰到的最主要需要注意的就是锁的使用,在对队列的写和释放时要注意加锁,在需要阻塞线程时,要注意通过{}设置锁的范围。

IsStart是原子的,所以在写这个变量的时候没有另外加锁。

目前我觉得这个线程池的缺陷就是可执行函数的类型被写死了,有尝试对Task类使用模板类,但是在Thread_Pool中还是要指明Task模板类的类型参数,要是有大神指点下就好了- -。

就先记录这么多,感觉这个线程池的还是有很多可以改进的地方的,也欢迎大家指出不足。

到此这篇关于C++实现线程池的简单方法的文章就介绍到这了,更多相关C++实现线程池内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • c++实现简单的线程池

    这是对pthread线程的一个简单应用 1.      实现了线程池的概念,线程可以重复使用. 2.      对信号量,互斥锁等进行封装,业务处理函数中只需写和业务相关的代码. 3.      移植性好.如果想把这个线程池代码应用到自己的实现中去,只要写自己的业务处理函数和改写工作队列数据的处理方法就可以了. Sample代码主要包括一个主程序和两个线程实现类 ThreadTest.cpp:主程序 CThreadManager:线程管理Class,线程池的实现类 CThread:线程Class

  • c++线程池实现方法

    本文实例讲述了c++线程池实现方法.分享给大家供大家参考.具体分析如下: 下面这个线程池是我在工作中用到过的,原理还是建立一个任务队列,让多个线程互斥的在队列中取出任务,然后执行,显然,队列是要加锁的 环境:ubuntu linux 文件名:locker.h #ifndef LOCKER_H_ #define LOCKER_H_ #include "pthread.h" class locker { public: locker(); virtual ~locker(); bool l

  • 基于C++11的threadpool线程池(简洁且可以带任意多的参数)

    C++11 加入了线程库,从此告别了标准库不支持并发的历史.然而 c++ 对于多线程的支持还是比较低级,稍微高级一点的用法都需要自己去实现,譬如线程池.信号量等.线程池(thread pool)这个东西,在面试上多次被问到,一般的回答都是:"管理一个任务队列,一个线程队列,然后每次取一个任务分配给一个线程去做,循环往复." 貌似没有问题吧.但是写起程序来的时候就出问题了. 废话不多说,先上实现,然后再啰嗦.(dont talk, show me ur code !) 代码实现 #pra

  • c++版线程池和任务池示例

    commondef.h 复制代码 代码如下: //单位秒,监测空闲列表时间间隔,在空闲队列中超过TASK_DESTROY_INTERVAL时间的任务将被自动销毁const int CHECK_IDLE_TASK_INTERVAL = 300;//单位秒,任务自动销毁时间间隔const int TASK_DESTROY_INTERVAL = 60; //监控线程池是否为空时间间隔,微秒const int IDLE_CHECK_POLL_EMPTY = 500; //线程池线程空闲自动退出时间间隔

  • 深入解析C++编程中线程池的使用

    为什么需要线程池 目前的大多数网络服务器,包括Web服务器.Email服务器以及数据库服务器等都具有一个共同点,就是单位时间内必须处理数目巨大的连接请求,但处理时间却相对较短. 传 统多线程方案中我们采用的服务器模型则是一旦接受到请求之后,即创建一个新的线程,由该线程执行任务.任务执行完毕后,线程退出,这就是是"即时创建,即 时销毁"的策略.尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执行次数极其频繁,那么服务器将处于 不停的创建线程,

  • 一种类似JAVA线程池的C++线程池实现方法

    什么是线程池 线程池(thread pool)是一种线程使用模式.线程过多或者频繁创建和销毁线程会带来调度开销,进而影响缓存局部性和整体性能.而线程池维护着多个线程,等待着管理器分配可并发执行的任务.这避免了在处理短时间任务时创建与销毁线程的代价,以及保证了线程的可复用性.线程池不仅能够保证内核的充分利用,还能防止过分调度. 线程池的实现 线程池在JAVA平台上已经有成熟的实现方式,本文介绍参考JAVA线程池实现方式实现的C++线程池类库. 该类库代码已上传至github仓库中,下载地址为:ht

  • C++线程池的简单实现方法

    本文以实例形式较为详细的讲述了C++线程池的简单实现方法.分享给大家供大家参考之用.具体方法如下: 一.几个基本的线程函数: 1.线程操纵函数: int pthread_create(pthread_t *tidp, const pthread_attr_t *attr, (void*)(*start_rtn)(void *), void *arg); //创建 void pthread_exit(void *retval); //终止自身 int pthread_cancel(pthread_

  • C++实现线程池的简单方法示例

    最近自己写了一个线程池. 总的来说,线程池就是有一个任务队列,一个线程队列,线程队列不断地去取任务队列中的任务来执行,当任务队列中为空时,线程阻塞等待新的任务添加过来. 我是用queue来存放任务,vector存放thread*,然后用condition_variable 来设置线程阻塞和唤醒. 下面直接上代码吧. 线程池类头文件Thread_Pool.h /******************************************** 线程池头文件 Author:十面埋伏但莫慌 Ti

  • Spring 与 JDK 线程池的简单使用示例详解

    1.配置自定义共享线程池(Spring线程池) @Configuration @EnableAsync public class ThreadPoolConfig{ //主要任务的调度,计划执行 @Bean("taskScheduler") public Executor createScheduler(){ // 创建一个线程池对象 ThreadPoolTaskScheduler scheduler = new ThreadPoolTaskScheduler(); // 定义一个线程

  • C#实现线程池的简单示例

    本文以实例演示了C#线程池的简单实现方法.程序中定义了一个对象类,用以包装参数,实现多个参数的传递.成员属性包括两个输入参数和一个输出参数.代码简单易懂,备有注释便于理解. 具体实现代码如下: using System; using System.Threading; //定义对象类,用以包装参数,实现多个参数的传递 class Packet { //成员属性包括两个输入参数和一个输出参数 protected internal String inval1; protected internal

  • 简单谈谈ThreadPoolExecutor线程池之submit方法

    jdk1.7.0_79 在上一篇<ThreadPoolExecutor线程池原理及其execute方法>中提到了线程池ThreadPoolExecutor的原理以及它的execute方法.本文解析ThreadPoolExecutor#submit. 对于一个任务的执行有时我们不需要它返回结果,但是有我们需要它的返回执行结果.对于线程来讲,如果不需要它返回结果则实现Runnable,而如果需要执行结果的话则可以实现Callable.在线程池同样execute提供一个不需要返回结果的任务执行,而对

  • Java线程池的简单使用方法实例教程

    目录 线程池使用场景? Java线程池使用 总结 线程池使用场景? java中经常需要用到多线程来处理一些业务,我们非常不建议单纯使用继承Thread或者实现Runnable接口的方式来创建线程,那样势必有创建及销毁线程耗费资源.线程上下文切换问题.同时创建过多的线程也可能引发资源耗尽的风险,这个时候引入线程池比较合理,方便线程任务的管理.java中涉及到线程池的相关类均在jdk1.5开始的java.util.concurrent包中,涉及到的几个核心类及接口包括:Executor.Execut

  • Java手写线程池的实现方法

    本文实例为大家分享了Java手写线程池的实现代码,供大家参考,具体内容如下 1.线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务.线程池线程都是后台线程. 2.线程池简易架构 3.简易线程池代码(自行优化) import java.util.List; /** * 线程接口 * * @Author yjian * @Date 14:49 2017/10/14 **/ public interface IThreadPool { //加入任务 void ex

  • python线程池 ThreadPoolExecutor 的用法示例

    前言 从Python3.2开始,标准库为我们提供了 concurrent.futures 模块,它提供了 ThreadPoolExecutor (线程池)和ProcessPoolExecutor (进程池)两个类. 相比 threading 等模块,该模块通过 submit 返回的是一个 future 对象,它是一个未来可期的对象,通过它可以获悉线程的状态主线程(或进程)中可以获取某一个线程(进程)执行的状态或者某一个任务执行的状态及返回值: 主线程可以获取某一个线程(或者任务的)的状态,以及返

  • springboot使用线程池(ThreadPoolTaskExecutor)示例

    目录 线程池创建 线程池参数 线程池测试1(核心线程数量) 线程池测试2(当核心线程数量和最大线程数量不够时) 总结 代码仓库:gitee 线程池创建 @Configuration @EnableAsync public class TaskPoolConfig { @Bean("syncExecutorPool") public Executor taskExecutor() { ThreadPoolTaskExecutor taskExecutor = new ThreadPool

  • Java详解使用线程池处理任务方法

    什么是线程池? 线程池就是一个可以复用线程的技术. 不使用线程池的问题: 如果用户每发起一个请求,后台就创建一个新线程来处理,下次新任务来了又要创建新线程,而创建新线程的开销是很大的,这样会严重影响系统的性能. 线程池常见面试题: 1.临时线程什么时候创建? 新任务提交时发现核心线程都在忙,任务队列也满了,并且还可以创建临时线程,此时才会创建临时线程. 2.什么时候会开始拒绝任务? 核心线程和临时线程都在忙,任务队列也满了,新的任务过来的时候才会开始任务拒绝. 1.线程池处理Runnable任务

随机推荐