python openCV实现摄像头获取人脸图片

本文实例为大家分享了python openCV实现摄像头获取人脸图片的具体代码,供大家参考,具体内容如下

在机器学习中,训练模型需要大量图片,通过openCV中的库可以快捷的调用摄像头,截取图片,可以快速的获取大量人脸图片

需要注意将CascadeClassifier方法中的地址改为自己包cv2包下面的文件

import cv2

def load_img(path,name,mun = 100,add_with = 0):
 # 获取人脸识别模型
 #
 #
 #以下路径需要更改为自己环境下xml文件
 #一般在环境下的Liba\site-packages\cv2\data\haarcascade_frontalface_alt2.xml
 classfier = cv2.CascadeClassifier('F:\\pyhton\\pytonApp\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalface_alt2.xml')
 #
 #
 # 创建一个窗口
 cv2.namedWindow('face')
 # 打开第一个个摄像头
 cap = cv2.VideoCapture(0)

 i = 0 # 计数
 if cap.isOpened():
  while i < mun:
   ok,frame = cap.read() # 读取一帧图片
   if not ok:
    continue

   faces = classfier.detectMultiScale(frame,1.2,3,minSize=(32,32))

   if len(faces) > 0:
    for face in faces:
     x, y, w, h = face
     cv2.rectangle(frame,(x-add_with,y-add_with), (x+w+add_with,y+h+add_with), (0,255,0), 2)
     img = frame[y-add_with:y+h+add_with,x-add_with:x+w+add_with]
     save_path = path+name+'_'+str(i)+'.jpg'
     print(save_path)
     cv2.imwrite(save_path,img)
     i += 1

   cv2.imshow('face', frame)
   c = cv2.waitKey(10)
   if c & 0xFF == ord('q'):
    break

  cap.release()
  cv2.destroyAllWindows()

if __name__ == '__main__' :
 # 第一个参数为保存图片的路径
 # 第二个参数为保存图片名字的开头
 # 第三个参数为图片的数量
 # 第四个参数可以调节图片的大小
 load_img('E:\\Screenshots\\home\\','rongdang',1000,20)

效果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • Python OpenCV利用笔记本摄像头实现人脸检测

    本文实例为大家分享了Python OpenCV利用笔记本摄像头实现人脸检测的具体代码,供大家参考,具体内容如下 1.安装opencv 首先参考其他文章安装pip. 之后以管理员身份运行命令提示符,输入以下代码安装opencv pip install --user opencv-python 可以使用以下代码测试安装是否成功 #导入opencv模块 import cv2 #捕捉帧,笔记本摄像头设置为0即可 capture = cv2.VideoCapture(0) #循环显示帧 while(Tru

  • Python+OpenCV人脸检测原理及示例详解

    关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • python中使用OpenCV进行人脸检测的例子

    OpenCV的人脸检测功能在一般场合还是不错的.而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码. 写代码之前应该先安装python-opencv: 复制代码 代码如下: $ sudo apt-get install python-opencv 具体原理就不多说了,可以参考一下这篇文章.直接上源码. 复制代码 代码如下: #!/usr/bin/python# -*- coding: UTF-8 -*- # face_detect.py # Face De

  • 基于python3 OpenCV3实现静态图片人脸识别

    本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联. 首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • python结合opencv实现人脸检测与跟踪

    模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和python的比较新的版本,推荐opencv2.4.X和python2.7.X. 直接去官网下载就ok了,python安装时一路next就行,下载的opencv.exe

  • python opencv3实现人脸识别(windows)

    本文实例为大家分享了python人脸识别程序,大家可进行测试 #coding:utf-8 import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(window_name) # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头 cap = cv2.VideoCapture(camera_idx) # 告诉OpenCV使用人脸识别分类器

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

随机推荐