PyTorch 解决Dataset和Dataloader遇到的问题

今天在使用PyTorch中Dataset遇到了一个问题。先看代码

class psDataset(Dataset):
  def __init__(self, x, y, transforms = None):
    super(Dataset, self).__init__()
    self.x = x
    self.y = y
    if transforms == None:
      self.transforms = Compose([Resize((224, 224)), ToTensor()])
    else:
      self.transforms = transforms

  def __len__(self):
    return len(self.x)

  def __getitem__(self, idx):
    img = Image.open(self.x[idx])
    img = self.transforms(img)
    return img, torch.tensor([[self.y[idx]]])

结果运行时报错:RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 3 and 1 in dimension 1 at /opt/conda/conda-bld/pytorch_1522182087074/work/torch/lib/TH/generic/THTensorMath.c:2897

Google了一下发现是这样的:读入的图片有些是灰度图(1个通道),绝大多数是RGB图片(3通道),也有些是带透明度的(4通道)

。这导致在读入后最后一个维度(通道数)不一致(可能是1、3或者4)。

Dataloader在制作batch data时,tensor的shape必须一样,就报了这个错误。解决的方法是:img = img.convert(“RGB”)。完

整代码如下:

class psDataset(Dataset):
  def __init__(self, x, y, transforms = None):
    super(Dataset, self).__init__()
    self.x = x
    self.y = y
    if transforms == None:
      self.transforms = Compose([Resize((224, 224)), ToTensor()])
    else:
      self.transforms = transforms

  def __len__(self):
    return len(self.x)

  def __getitem__(self, idx):
    img = Image.open(self.x[idx])
    img = img.convert("RGB")
    img = self.transforms(img)
    return img, torch.tensor([[self.y[idx]]])

以上这篇PyTorch 解决Dataset和Dataloader遇到的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch::Dataloader中的迭代器和生成器应用详解

    在使用pytorch训练模型,经常需要加载大量图片数据,因此pytorch提供了好用的数据加载工具Dataloader. 为了实现小批量循环读取大型数据集,在Dataloader类具体实现中,使用了迭代器和生成器. 这一应用场景正是python中迭代器模式的意义所在,因此本文对Dataloader中代码进行解读,可以更好的理解python中迭代器和生成器的概念. 本文的内容主要有: 解释python中的迭代器和生成器概念 解读pytorch中Dataloader代码,如何使用迭代器和生成器实现数

  • Pytorch DataLoader 变长数据处理方式

    关于Pytorch中怎么自定义Dataset数据集类.怎样使用DataLoader迭代加载数据,这篇官方文档已经说得很清楚了,这里就不在赘述. 现在的问题:有的时候,特别对于NLP任务来说,输入的数据可能不是定长的,比如多个句子的长度一般不会一致,这时候使用DataLoader加载数据时,不定长的句子会被胡乱切分,这肯定是不行的. 解决方法是重写DataLoader的collate_fn,具体方法如下: # 假如每一个样本为: sample = { # 一个句子中各个词的id 'token_li

  • Pytorch技巧:DataLoader的collate_fn参数使用详解

    DataLoader完整的参数表如下: class torch.utils.data.DataLoader( dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None) D

  • pytorch中如何使用DataLoader对数据集进行批处理的方法

    最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络. pytorch中有很方便的dataloader函数来方便我们进行批处理,做了简单的例子,过程很简单,就像把大象装进冰箱里一共需要几步? 第一步:打开冰箱门. 我们要创建torch能够识别的数据集类型(pytorch中也有很多现成的数据集类型,以后再说). 首先我们建立两个向量X和Y,一个作为输入的数据,一个作为正确的结果: 随后我们需要把X和Y组成一个完整的数据集,

  • PyTorch 解决Dataset和Dataloader遇到的问题

    今天在使用PyTorch中Dataset遇到了一个问题.先看代码 class psDataset(Dataset): def __init__(self, x, y, transforms = None): super(Dataset, self).__init__() self.x = x self.y = y if transforms == None: self.transforms = Compose([Resize((224, 224)), ToTensor()]) else: sel

  • Pytorch自定义Dataset和DataLoader去除不存在和空数据的操作

    [源码GitHub地址]:点击进入 1. 问题描述 之前写了一篇关于<pytorch Dataset, DataLoader产生自定义的训练数据>的博客,但存在一个问题,我们不能在Dataset做一些数据清理,如果我们传递给Dataset数据,本身存在问题,那么迭代过程肯定出错的. 比如我把很多图片路径都传递给Dataset,如果图片路径都是正确的,且图片都存在也没有损坏,那显然运行是没有问题的: 但倘若传递给Dataset的图片路径有些图片是不存在,这时你通过Dataset读取图片数据,然后

  • Pytorch数据读取之Dataset和DataLoader知识总结

    一.前言 确保安装 scikit-image numpy 二.Dataset 一个例子: # 导入需要的包 import torch import torch.utils.data.dataset as Dataset import numpy as np # 编造数据 Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]]) Label = np.asarray([[0], [1], [0], [2]]) # 数据[1,2],对应的标签是[0],数据

  • PyTorch Dataset与DataLoader使用超详细讲解

    目录 一.Dataset 1. 在控制台进行操作 ①获取图片的基本信息 ②获取文件的基本信息 2. 编写一个继承Dataset 的类加载数据 ①定义 MyData类 ②创建类的实例并调用 二.DataLoader 一.Dataset Dataset 类提供一种方式去获取数据及其标签 主要有两个目的: 获取每一个数据及其标签 获取数据的总量大小 1. 在控制台进行操作 Hymenoptera (膜翅目昆虫)数据集下载地址: 链接: https://pan.baidu.com/s/1XKwXsAtE

  • Pytorch使用技巧之Dataloader中的collate_fn参数详析

    以MNIST为例 from torchvision import datasets mnist = datasets.MNIST(root='./data/', train=True, download=True) print(mnist[0]) 结果 (<PIL.Image.Image image mode=L size=28x28 at 0x196E3F1D898>, 5) MINIST数据集的dataset是由一张图片和一个label组成的元组 dataloader = torch.ut

  • Pytorch 解决自定义子Module .cuda() tensor失败的问题

    最近在刚从tensorflow转入pytorch,对于自定义的nn.Module 碰到了个问题,即使把模组 modle=Model().cuda(),里面的子Module的parameter都没有被放入cuda,导致输入是torch.cuda.FloatTensor,但是比如CNN的weight却还是torch.FloatTensor (当然最粗暴的方法就是直接在子模组里面都用了 .cuda() 但是问题并不在那,可能是调用子模组的时候,存在某些错误,导致父模组没有把子模组的parameter注

  • pytorch 实现多个Dataloader同时训练

    看代码吧~ 如果两个dataloader的长度不一样,那就加个: from itertools import cycle 仅使用zip,迭代器将在长度等于最小数据集的长度时耗尽. 但是,使用cycle时,我们将再次重复最小的数据集,除非迭代器查看最大数据集中的所有样本. 补充:pytorch技巧:自定义数据集 torch.utils.data.DataLoader 及Dataset的使用 本博客中有可直接运行的例子,便于直观的理解,在torch环境中运行即可. 1. 数据传递机制 在 pytor

  • Pytorch关于Dataset 的数据处理

    目录 Pytorch系列是了解与使用Pytorch编程来实现卷积神经网络. 学习如何对卷积神经网络编程:首先,需要了解Pytorch对数据的使用(也是在我们模型流程中对数据的预处理部分),其中有两个包Dataset,DataLoader.Dataset是Pytorch对于单个数据的处理类似于给一堆数据进行编号,(在有标签的图像处理中)对其有序地提取图像与标签, 而DataLoader则是一坨一坨的数据进行批次的处理. 此实验运用的数据是北邮邓伟洪老师的人脸表情包的数据集, 当然大家也可以自己手动

  • Pytorch关于Dataset 的数据处理

    Pytorch系列是了解与使用Pytorch编程来实现卷积神经网络. 学习如何对卷积神经网络编程:首先,需要了解Pytorch对数据的使用(也是在我们模型流程中对数据的预处理部分),其中有两个包Dataset,DataLoader.Dataset是Pytorch对于单个数据的处理类似于给一堆数据进行编号,(在有标签的图像处理中)对其有序地提取图像与标签,而DataLoader则是一坨一坨的数据进行批次的处理. 此实验运用的数据是北邮邓伟洪老师的人脸表情包的数据集, 当然大家也可以自己手动做个二分

随机推荐