Python matplotlib绘制灰度和彩色直方图

目录
  • 一、Matplotlib.Pyplot简介
    • 1、Matplotlib
    • 2、Pyplot
  • 二、灰度直方图
    • 1、主要函数
    • 2、实现代码
    • 3、效果示例
  • 三、彩色直方图
    • 1、实现代码
    • 2、效果示例

一、Matplotlib.Pyplot简介

1、Matplotlib

Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。

Matplotlib 可以用来绘制各种静态,动态,交互式的图表。

Matplotlib 是一个非常强大的 Python 画图工具,我们可以使用该工具将很多数据通过图表的形式更直观的呈现出来。

Matplotlib 可以绘制线图、散点图、等高线图、条形图、柱状图、3D 图形、甚至是图形动画等等。

2、Pyplot

Pyplot 是 Matplotlib 的子库,提供了和 MATLAB 类似的绘图 API。

Pyplot 是常用的绘图模块,能很方便让用户绘制 2D 图表。

Pyplot 包含一系列绘图函数的相关函数,每个函数会对当前的图像进行一些修改,例如:给图像加上标记,生新的图像,在图像中产生新的绘图区域等等。

使用的时候,我们可以使用 import 导入 pyplot 库,并设置一个别名 plt:

import matplotlib.pyplot as plt

然后我们就可以使用它来绘制图形了

二、灰度直方图

1、主要函数

主要用到两个函数

(1) calcHist()

(2) hist()

具体用法我就不做过多介绍了,可以自行参考文档,或者找一找网上大神们的解释说明。

2、实现代码

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('Photos/1.bmp')
cv.imshow('Img', img)

gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow('GrayImg', gray_img)

# Gray Histogram
gray_hist = cv.calcHist([gray_img], [0], None, [256], [0,256], False)
# cv.calcHist(images, channels, mask, histSize, ranges, accumulate)

plt.figure(1)
plt.title('Gray Histogram Contour')
plt.xlabel('gray level')
plt.ylabel('number of pixels')
plt.plot(gray_hist)
plt.xlim([0,256])

plt.figure(2)
plt.title('Gray Histogram')
plt.xlabel('gray level')
plt.ylabel('number of pixels')
plt.hist(gray_img.ravel(),256)

plt.show()

cv.waitKey(0)

3、效果示例

三、彩色直方图

跟灰度直方图的原理差不多,需要对三种颜色进行一个简单的遍历,循环输出图形。

1、实现代码

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np

img = cv.imread('Photos/1.bmp')
cv.imshow('Img', img)

plt.figure()
plt.title('Color Histogram')
plt.xlabel('level')
plt.ylabel('number of pixels')
colors = ('b', 'g', 'r')
for i,item in enumerate(colors):
    hist = cv.calcHist([img], [i], None, [256], [0,256])
    plt.plot(hist, color=item)
    plt.xlim([0,256])

plt.show()

cv.waitKey(0)

2、效果示例

由此图我们可以直观地看出三种颜色不同阈值所出现的频率的大小。 

到此这篇关于Python matplotlib绘制灰度和彩色直方图的文章就介绍到这了,更多相关Python matplotlib绘制直方图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python 对一幅灰度图像进行直方图均衡化

    from PIL import Image from pylab import * from numpy import * def histeq(im,nbr_bins = 256): """对一幅灰度图像进行直方图均衡化""" #计算图像的直方图 #在numpy中,也提供了一个计算直方图的函数histogram(),第一个返回的是直方图的统计量,第二个为每个bins的中间值 imhist,bins = histogram(im.flatten(

  • python matplotlib库直方图绘制详解

    例题:假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据? 一些概念及问题: 把数据分为多少组进行统计 组数要适当,太少会有较大的统计误差,太多规律不明显 组数:将数据分组,共分为多少组 组距:指每个小组的两个端点的距离 组数:极差 / 组距,也就是 (最大值-最小值)/ 组距 频数分布直方图与频率分布直方图,hist()方法需增加参数normed 注意:一般来说能够使用plt.hi

  • Python利用 matplotlib 绘制直方图

    目录 1. 直方图概述 1.1什么是直方图? 1.2直方图使用场景 1.3直方图绘制步骤 1.4案例展示 2. 直方图属性 2.1设置颜色 2.2设置长条形数目 2.3设置透明度 2.4设置样式 3. 添加折线直方图 4. 堆叠直方图 5. 不等距直方图 6. 多类直方图 复习回顾: 经过前面对 matplotlib 模块从底层架构.基本绘制步骤等学习,我们已经学习了折线图.柱状图的绘制方法. matplotlib 模块基础:对matplotlib 模块常用方法进行学习 matplotlib 模

  • python matplotlib模块基本图形绘制方法小结【直线,曲线,直方图,饼图等】

    本文实例讲述了python matplotlib模块基本图形绘制方法.分享给大家供大家参考,具体如下: matplotlib模块是python中一个强大的绘图模块 安装 pip  install matplotlib 首先我们来画一个简单的图来感受它的神奇 import numpy as np import matplotlib.pyplot as plt import matplotlib zhfont1=matplotlib.font_manager.FontProperties(fname

  • Python基于matplotlib绘制栈式直方图的方法示例

    本文实例讲述了Python基于matplotlib绘制栈式直方图的方法.分享给大家供大家参考,具体如下: 平时我们只对一组数据做直方图统计,这样我们只要直接画直方图就可以了. 但有时候我们同时画多组数据的直方图(比如说我大一到大四跑大学城内环的用时的分布),大一到大四用不同颜色的直方图,显示在一张图上,这样会很直观. #!/usr/bin/env python # -*- coding: utf-8 -*- #http://www.jb51.net/article/100363.htm # nu

  • Python matplotlib绘制灰度和彩色直方图

    目录 一.Matplotlib.Pyplot简介 1.Matplotlib 2.Pyplot 二.灰度直方图 1.主要函数 2.实现代码 3.效果示例 三.彩色直方图 1.实现代码 2.效果示例 一.Matplotlib.Pyplot简介 1.Matplotlib Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式. Matplotlib 可以用来绘制各种静态,动态,交互式的图表. Matplotlib 是一个非常强大的 Python 画

  • Python+OpenCV绘制灰度直方图详解

    1.直方图的概念 图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的.纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比.图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征. 图像灰度直方图: 一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征.图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少.图像的灰度直方图是灰度级的函数,描述的是图像中

  • Python+matplotlib绘制条形图和直方图

    目录 摘要 一.bar()函数 二,hist()函数 三.数据统计 摘要 先介绍条形图直方图,然后用随机数生成一系列数据,保存到列表中,最后统计出相关随机数据的概率并展示 前述介绍了由点进行划线形成的拆线图和散点形成的曲线图,连点成线,主要用到了matplotlib中的plot()和scatter()这个函数,但在实际生活工作中,不仅有折线图,还经常会出现月份经济数据对比图,身高统计图等,制成图表就很容易对比看出差异. 下面用matplotlib中bar()函数和hist()来实现条形图和直方图

  • python+matplotlib绘制3D条形图实例代码

    本文分享的实例主要实现的是Python+matplotlib绘制一个有阴影和没有阴影的3D条形图,具体如下. 首先看看演示效果: 完整代码如下: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # setup the figure and axes fig = plt.figure(figsize=(8, 3)) ax1 = fig.add_subplot(121

  • python+matplotlib绘制旋转椭圆实例代码

    旋转椭圆 实例代码: import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Ellipse delta = 45.0 # degrees angles = np.arange(0, 360 + delta, delta) ells = [Ellipse((1, 1), 4, 2, a) for a in angles] a = plt.subplot(111, aspect='equal

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 其实在数据统计图表中,有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势. 本期,我们将详细

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 往期内容速看 Python用 matplotlib 绘制柱状图 Python matplotlib底层

  • 使用Python matplotlib绘制简单的柱形图、折线图和直线图

    目录 介绍 1.柱形图 2.直线图 3.折线图 总结 介绍 Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件.它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式.这里将会探索 matplotlib 的常见用法. 1.柱形图 import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[5,7,4,3,1] #1. 确定柱状图数量,可以认为是x方向刻度和y方向刻度 color=['red','black','peru','orc

  • python+matplotlib绘制简单的海豚(顶点和节点的操作)

    海豚 本文例子主要展示了如何使用补丁.路径和转换类绘制和操作给定的顶点和节点的形状. 测试可用. import matplotlib.cm as cm import matplotlib.pyplot as plt from matplotlib.patches import Circle, PathPatch from matplotlib.path import Path from matplotlib.transforms import Affine2D import numpy as n

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

随机推荐