linux中高并发socket最大连接数的优化详解

首先我们可以通过ulimit –a命令来查看系统的一些资源限制情况,如下:

# ulimit -a
core file size   (blocks, -c) 1024
data seg size   (kbytes, -d) unlimited
scheduling priority    (-e) 0
file size    (blocks, -f) unlimited
pending signals     (-i) 127422
max locked memory  (kbytes, -l) 64
max memory size   (kbytes, -m) unlimited
open files      (-n) 20480
pipe size   (512 bytes, -p) 8
POSIX message queues  (bytes, -q) 819200
real-time priority    (-r) 0
stack size    (kbytes, -s) unlimited
cpu time    (seconds, -t) unlimited
max user processes    (-u) 81920
virtual memory   (kbytes, -v) unlimited
file locks      (-x) unlimited

这里重点关注open filesmax user processes。分别表示:单个进程打开的最大文件数;系统可以申请最大的进程数。

1、查看、修改文件数(当前session有效):

# ulimit -n
20480
# ulimit -n 20480

2、查看、修改进程数(当前session有效):

# ulimit -u
81920
# ulimit -u 81920

3、永久设置文件数、最大进程:

  • 可以编辑# vim /etc/security/limits.conf在其中指定最大设置;
  • 或者在/etc/profile文件指定;

一、最大进程数:

最近在Linux服务器上发布应用时碰到一个如下的异常:

Caused by: java.lang.OutOfMemoryError: unable to create new native thread
at java.lang.Thread.start0(Native Method)
at java.lang.Thread.start(Thread.java:640)

初看可能会认为是系统的内存不足,如果这样想的话就被这段提示带到沟里面去了。上面这段错误提示的本质是Linux操作系统无法创建更多进程,导致出错。因此要解决这个问题需要修改Linux允许创建更多的进程。

1、临时设置:

我们可以使用 ulimit -u 81920 修改max user processes的值,但是只能在当前终端的这个session里面生效,重新登录后仍然是使用系统默认值。

2、永久设置:

1)编辑# vim /etc/security/limits.conf

在文件中添加如下内容:

  • soft nproc 81920
  • hard nproc 81920

注: *表示所有用户,soft、hard表示软限制、硬限制。(软限制<=硬限制)

2)或者在/etc/profile文件中添加:

ulimit -u 81920

这样每次用户登录就可以设置最大进程数。

二、最大打开文件数:

最大文件打开数在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每个TCP连接都要创建一个socket句柄,每个socket句柄同时也是一个文件句柄)。

1、查看最大打开文件数:

$ ulimit -n
1024

这表示当前用户的每个进程最多允许同时打开1024个文件,这1024个文件中还得除去每个进程必然打开的标准输入,标准输出,标准错误,服务器监听 socket,进程间通讯的unix域socket等文件,那么剩下的可用于客户端socket连接的文件数就只有大概1024-10=1014个左右。也就是说缺省情况下,基于Linux的通讯程序最多允许同时1014个TCP并发连接。

对于想支持更高数量的TCP并发连接的通讯处理程序,就必须修改Linux对当前用户的进程同时打开的文件数量的软限制(soft limit)和硬限制(hardlimit)。其中:

  • 软限制是指Linux在当前系统能够承受的范围内进一步限制用户同时打开的文件数;
  • 硬限制则是根据系统硬件资源状况(主要是系统内存)计算出来的系统最多可同时打开的文件数量。通常软限制小于或等于硬限制。

2、修改最大打开文件数:

[speng@as4 ~]$ ulimit -n 10240

上述命令中,临时设置的单一进程允许打开的最大文件数(当前session有效)。 如果系统回显类似于“Operation notpermitted”之类的话,说明上述限制修改失败,实际上是因为在中指定的数值超过了Linux系统对该用户打开文件数的软限制或硬限制。因此,就需要修改Linux系统对用户的关于打开文件数的软限制和硬限制。

1)首先,修改/etc/security/limits.conf文件,在文件中添加如下行:

speng soft nofile 10240
speng hard nofile 10240

其中speng指定了要修改哪个用户的打开文件数限制,可用'*'号表示修改所有用户的限制;soft或hard指定要修改软限制还是硬限制;10240则指定了想要修改的新的限制值,即最大打开文件数(请注意软限制值要小于或等于硬限制)。修改完后保存文件。

2)其次,修改/etc/pam.d/login文件,在文件中添加如下行:

session required /lib/security/pam_limits.so

这是告诉Linux在用户完成系统登录后,应该调用pam_limits.so模块来设置系统对该用户可使用的各种资源数量的最大限制(包括用户可打开的最大文件数限制),而pam_limits.so模块就会从/etc/security/limits.conf文件中读取配置来设置这些限制值。修改完后保存此文件。

3)第三步,查看Linux系统级的最大打开文件数限制(硬限制),使用如下命令:

[speng@as4 ~]$ cat /proc/sys/fs/file-max
12158

这表明这台Linux系统最多允许同时打开(即包含所有用户打开文件数总和)12158个文件,是Linux系统级硬限制,所有用户级的打开文件数限制都不应超过这个数值。通常这个系统级硬限制是Linux系统在启动时根据系统硬件资源状况计算出来的最佳的最大同时打开文件数限制,如果没有特殊需要,不应该修改此限制,除非想为用户级打开文件数限制设置超过此限制的值。修改此硬限制的方法是修改/etc/rc.local脚本,在脚本中添加如下行:

echo 22158 > /proc/sys/fs/file-max

这是让Linux在启动完成后强行将系统级打开文件数硬限制设置为22158。修改完后保存此文件。

完成上述步骤后重启系统,一般情况下就可以将Linux系统对指定用户的单一进程允许同时打开的最大文件数限制设为指定的数值。如果重启后用 ulimit-n命令查看用户可打开文件数限制仍然低于上述步骤中设置的最大值,这可能是因为在用户登录脚本/etc/profile中使用ulimit -n命令已经将用户可同时打开的文件数做了限制。由于通过ulimit-n修改系统对用户可同时打开文件的最大数限制时,新修改的值只能小于或等于上次 ulimit-n设置的值,因此想用此命令增大这个限制值是不可能的。所以,如果有上述问题存在,就只能去打开/etc/profile脚本文件,在文件中查找是否使用了ulimit-n限制了用户可同时打开的最大文件数量,如果找到,则删除这行命令,或者将其设置的值改为合适的值,然后保存文件,用户退出并重新登录系统即可。
通过上述步骤,就为支持高并发TCP连接处理的通讯处理程序解除关于打开文件数量方面的系统限制。

三、网络内核对TCP连接的显示:

1、修改网络内核对TCP连接的本地端口范围限制:

在Linux上编写支持高并发TCP连接的客户端通讯处理程序时,有时会发现尽管已经解除了系统对用户同时打开文件数的限制,但仍会出现并发TCP连接数增加到一定数量时,再也无法成功建立新的TCP连接的现象。出现这种现在的原因有多种。第一种原因可能是因为Linux网络内核对本地端口号范围有限制。此时,进一步分析为什么无法建立TCP连接,会发现问题出在connect()调用返回失败,查看系统错误提示消息是“Can't assign requestedaddress”。同时,如果在此时用tcpdump工具监视网络,会发现根本没有TCP连接时客户端发SYN包的网络流量。这些情况说明问题在于本地Linux系统内核中有限制。其实,问题的根本原因在于Linux内核的TCP/ip协议实现模块对系统中所有的客户端TCP连接对应的本地端口号的范围进行了限制(例如,内核限制本地端口号的范围为1024~32768之间)。

当系统中某一时刻同时存在太多的TCP客户端连接时,由于每个TCP客户端连接都要占用一个唯一的本地端口号(此端口号在系统的本地端口号范围限制中),如果现有的TCP客户端连接已将所有的本地端口号占满,则此时就无法为新的TCP客户端连接分配一个本地端口号了,因此系统会在这种情况下在connect()调用中返回失败,并将错误提示消息设为“Can't assignrequested address”。内核编译时默认设置的本地端口号范围可能太小,因此需要修改此本地端口范围限制。

1)第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:

net.ipv4.ip_local_port_range = 1024 65000

这表明将系统对本地端口范围限制设置为1024~65000之间。请注意,本地端口范围的最小值必须大于或等于1024;而端口范围的最大值则应小于或等于65535。修改完后保存此文件。

2)第二步,执行sysctl命令:

[speng@as4 ~]$ sysctl -p

如果系统没有错误提示,就表明新的本地端口范围设置成功。如果按上述端口范围进行设置,则理论上单独一个进程最多可以同时建立60000多个TCP客户端连接。

2、修改网络内核IP_TABLE防火墙对最大跟踪的TCP连接数限制:

修改了最大文件打开数,但仍会出现并发TCP连接数增加到一定数量时,再也无法成功建立新的TCP连接的现象。第二种无法建立TCP连接的原因可能是因为Linux网络内核的IP_TABLE防火墙对最大跟踪的TCP连接数有限制。此时程序会表现为在 connect()调用中阻塞,如同死机,如果用tcpdump工具监视网络,也会发现根本没有TCP连接时客户端发SYN包的网络流量。由于 IP_TABLE防火墙在内核中会对每个TCP连接的状态进行跟踪,跟踪信息将会放在位于内核内存中的conntrackdatabase中,这个数据库的大小有限,当系统中存在过多的TCP连接时,数据库容量不足,IP_TABLE无法为新的TCP连接建立跟踪信息,于是表现为在connect()调用中阻塞。此时就必须修改内核对最大跟踪的TCP连接数的限制,方法同修改内核对本地端口号范围的限制是类似的:

1)第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:

net.ipv4.ip_conntrack_max = 10240

这表明将系统对最大跟踪的TCP连接数限制设置为10240。请注意,此限制值要尽量小,以节省对内核内存的占用。

2)第二步,执行sysctl命令:

[speng@as4 ~]$ sysctl -p

如果系统没有错误提示,就表明系统对新的最大跟踪的TCP连接数限制修改成功。如果按上述参数进行设置,则理论上单独一个进程最多可以同时建立10000多个TCP客户端连接。

【补充】优化好的内核参数sysctl.conf:

/etc/sysctl.conf 是用来控制linux网络的配置文件,对于依赖网络的程序(如web服务器和cache服务器)非常重要,RHEL默认提供的最好调整。推荐配置(把原/etc/sysctl.conf内容清掉,把下面内容复制进去):

net.ipv4.ip_local_port_range = 1024 65536
net.core.rmem_max=16777216
net.core.wmem_max=16777216
net.ipv4.tcp_rmem=4096 87380 16777216
net.ipv4.tcp_wmem=4096 65536 16777216
net.ipv4.tcp_fin_timeout = 10
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_window_scaling = 0
net.ipv4.tcp_sack = 0
net.core.netdev_max_backlog = 30000
net.ipv4.tcp_no_metrics_save=1
net.core.somaxconn = 262144
net.ipv4.tcp_syncookies = 0
net.ipv4.tcp_max_orphans = 262144
net.ipv4.tcp_max_syn_backlog = 262144
net.ipv4.tcp_synack_retries = 2
net.ipv4.tcp_syn_retries = 2

修改完毕后,执行/sbin/sysctl -p 生效。

四、使用支持高并发网络I/O的编程技术:

在Linux上编写高并发TCP连接应用程序时,必须使用合适的网络I/O技术和I/O事件分派机制。

可用的I/O技术有同步I/O,非阻塞式同步I/O(也称反应式I/O),以及异步I/O。在高TCP并发的情形下,如果使用同步I/O,这会严重阻塞程序的运转,除非为每个TCP连接的I/O创建一个线程。但是,过多的线程又会因系统对线程的调度造成巨大开销。因此,在高TCP并发的情形下使用同步 I/O是不可取的,这时可以考虑使用非阻塞式同步I/O或异步I/O。非阻塞式同步I/O的技术包括使用select(),poll(),epoll等机制。异步I/O的技术就是使用AIO

从I/O事件分派机制来看,使用select()是不合适的,因为它所支持的并发连接数有限(通常在1024个以内)。如果考虑性能,poll()也是不合适的,尽管它可以支持的较高的TCP并发数,但是由于其采用“轮询”机制,当并发数较高时,其运行效率相当低,并可能存在I/O事件分派不均,导致部分TCP连接上的I/O出现“饥饿”现象。而如果使用epoll或AIO,则没有上述问题(早期Linux内核的AIO技术实现是通过在内核中为每个 I/O请求创建一个线程来实现的,这种实现机制在高并发TCP连接的情形下使用其实也有严重的性能问题。但在最新的Linux内核中,AIO的实现已经得到改进)。
综上所述,在开发支持高并发TCP连接的Linux应用程序时,应尽量使用epoll或AIO技术来实现并发的TCP连接上的I/O控制,这将为提升程序对高并发TCP连接的支持提供有效的I/O保证。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。谢谢大家对我们的支持。

(0)

相关推荐

  • Linux UDP socket 设置为的非阻塞模式与阻塞模式区别

    Linux UDP socket 设置为的非阻塞模式与阻塞模式区别 UDP socket 设置为的非阻塞模式 Len = recvfrom(SocketFD, szRecvBuf, sizeof(szRecvBuf), MSG_DONTWAIT, (struct sockaddr *)&SockAddr,&ScokAddrLen); UDP socket 设置为的阻塞模式 Len = recvfrom(SocketFD, szRecvBuf, sizeof(szRecvBuf), 0, (

  • 详解Linux的SOCKET编程

    本篇文章对Linux的SOCKET编程进行了详细解释,文章后面分享了一个编程实例供大家学习. 1. 网络中进程之间如何通信 进程通信的概念最初来源于单机系统.由于每个进程都在自己的地址范围内运行,为保证两个相互通信的进程之间既互不干扰又协调一致工作,操作系统为进程通信提供了相应设施,如 UNIX BSD有:管道(pipe).命名管道(named pipe)软中断信号(signal) UNIX system V有:消息(message).共享存储区(shared memory)和信号量(semap

  • linux下开启php的sockets扩展支持实例

    下个相同版本的php源码,进行编译安装,再按照上面步骤搞,生成的so.copy到rpm装的那个,修改php.ini进行扩展就行了, 或者到网上找相同版本,相同系统 的编译好的so文件. 在linux下给PHP安装socket扩展,参考方法如下: #cd /usr/soft/php/ext/sockets (进入原php安装文件下的sockets目录) #/usr/local/php/bin/phpize (运行安装后的php安装文件下的phpize) #./configure --prefix=

  • Linux进程间通信方式之socket使用实例

    套接字是一种通信机制,凭借这种机制,客户/服务器系统的开发工作既可以在本地单机上进行,也可以跨网络进行. 套接字的特性有三个属性确定,它们是:域(domain),类型(type),和协议(protocol).套接字还用地址作为它的名字.地址的格式随域(又被称为协议族,protocol family)的不同而不同.每个协议族又可以使用一个或多个地址族定义地址格式. 1.套接字的域 域指定套接字通信中使用的网络介质.最常见的套接字域是AF_INET,它是指Internet网络,许多Linux局域网使

  • Linux下高并发socket最大连接数所受的各种限制(详解)

    1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每个TCP连接都要创建一个socket句柄,每个socket句柄同时也是一个文件句柄).可使用ulimit命令查看系统允许当前用户进程打开的文件数限制: [speng@as4 ~]$ ulimit -n 1024 这表示当前用户的每个进程最多允许同时打开1024个文件,这1024个文件中还得除去每个进

  • C语言实现Linux下的socket文件传输实例

    本文实例讲述了C语言实现Linux下的socket文件传输.分享给大家供大家参考.具体如下: server.c如下: //////////////////////////////////// //服务器代码 /////////////////////////////////// //本文件是服务器的代码 #include <netinet/in.h> // for sockaddr_in #include <sys/types.h> // for socket #include &

  • linux中高并发socket最大连接数的优化详解

    首先我们可以通过ulimit –a命令来查看系统的一些资源限制情况,如下: # ulimit -a core file size (blocks, -c) 1024 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 127422 max locked memory (kbytes, -l) 64 max memo

  • 基于Tomcat安全配置与性能优化详解

    Tomcat 是 Apache软件基金会下的一个免费.开源的WEB应用服务器,它可以运行在 Linux 和 Windows 等多个平台上,由于其性能稳定.扩展性好.免费等特点深受广大用户喜爱.目前,很多互联网应用和企业应用都部署在 Tomcat 服务器上,比如我们公司,哈. 之前我们 tomcat 都采用的是默认的配置,因此在安全方面还是有所隐患的.上周对测试环境的所有服务器的tomcat都做了安全优化,其间也粗略做了一些性能优化,这里就简单记录分享下! 一.版本安全 升级当前的tomcat版本

  • Linux 系统 nginx 服务器安装及负载均衡配置详解

    nginx(engine x) 是一个 高性能 的 HTTP 和 反向代理 服务器.邮件代理服务器以及通用的 TCP/UDP 代理服务器.其特点为轻量级(占用系统资源少).稳定性好.可扩展性(模块化结构).并发能力强.配置简单等. 本文主要介绍在测试环境中通过 nginx 实现基本的 负载均衡 功能. nginx 可以提供 HTTP 服务,包括处理静态文件,支持 SSL 和 TLS SNI.GZIP 网页压缩.虚拟主机.URL 重写等功能,可以搭配 FastCGI.uwsgi 等程序处理动态请求

  • Android性能优化之弱网优化详解

    目录 弱网优化 1.Serializable原理 1.1 分析过程 1.2 Serializable接口 1.3 ObjectOutputStream 1.4 序列化后二进制文件的一点解读 1.5 常见的集合类的序列化问题 1.5.1 HashMap 1.5.2 ArrayList 2.Parcelable 2.1 Parcel的简介 2.2 Parcelable的三大过程介绍(序列化.反序列化.描述) 2.2.1 描述 2.2.2 序列化 2.2.3 反序列化 2.3 Parcelable的实

  • LINUX启动/重启/停上MYSQL的命令(详解)

    如何启动/停止/重启MySQL 一.启动方式 1.使用 service 启动:service mysqld start 2.使用 mysqld 脚本启动:/etc/inint.d/mysqld start 3.使用 safe_mysqld 启动:safe_mysqld& 二.停止 1.使用 service 启动:service mysqld stop 2.使用 mysqld 脚本启动:/etc/inint.d/mysqld stop 3.mysqladmin shutdown 三.重启 1.使用

  • 基于Python中单例模式的几种实现方式及优化详解

    单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. 比如,某个服务器程序的配置信息存放在一个文件中,客户端通过一个 AppConfig 的类来读取配置文件的信息.如果在程序运行期间,有很多地方都需要使用配置文件的内容,也就是说,很多地方都需要创建 AppConfig 对象的实例,这就导致系统中存在多个 AppConfig 的实例对象,而这样会严重浪

  • 基于js文件加载优化(详解)

    在js引擎部分,我们可以了解到,当渲染引擎解析到script标签时,会将控制权给JS引擎,如果script加载的是外部资源,则需要等待下载完后才能执行. 所以,在这里,我们可以对其进行很多优化工作. 放置在BODY底部 为了让渲染引擎能够及早的将DOM树给渲染出来,我们需要将script放在body的底部,让页面尽早脱离白屏的现象,即会提早触发DOMContentLoaded事件. 但是由于在IOS Safari, Android browser以及IOS webview里面即使你把js脚本放到

  • PHP中关于php.ini参数优化详解

    PHP引擎php.ini参数优化 无论是apache还是nginx,php.ini都是适合的.而php-fpm.conf适合nginx+fcgi的配置 首先选择产品环境的php.ini(php.ini-production) /home/oldboy/tools/php-5.3.27/php.ini-development /home/oldboy/tools/php-5.3.27/php.ini-production 1.打开php的安全模式 php的安全模式是个非常重要的php内嵌的安全机制

  • java并发编程专题(三)----详解线程的同步

    有兴趣的朋友可以回顾一下前两篇 java并发编程专题(一)----线程基础知识 java并发编程专题(二)----如何创建并运行java线程 在现实开发中,我们或多或少的都经历过这样的情景:某一个变量被多个用户并发式的访问并修改,如何保证该变量在并发过程中对每一个用户的正确性呢?今天我们来聊聊线程同步的概念. 一般来说,程序并行化是为了获得更高的执行效率,但前提是,高效率不能以牺牲正确性为代价.如果程序并行化后, 连基本的执行结果的正确性都无法保证, 那么并行程序本身也就没有任何意义了.因此,

随机推荐