C++实现双目立体匹配Census算法的示例代码

上一篇介绍了双目立体匹配SAD算法,这一篇介绍Census算法。

Census原理:

在视图中选取任一点,以该点为中心划出一个例如3 × 3 的矩形,矩形中除中心点之外的每一点都与中心点进行比较,灰度值小于中心点记为1,灰度大于中心点的则记为0,以所得长度为 8 的只有 0 和 1 的序列作为该中心点的 census 序列,即中心像素的灰度值被census 序列替换。经过census变换后的图像使用汉明距离计算相似度,所谓图像匹配就是在匹配图像中找出与参考像素点相似度最高的点,而汉明距正是匹配图像像素与参考像素相似度的度量。具体而言,对于欲求取视差的左右视图,要比较两个视图中两点的相似度,可将此两点的census值逐位进行异或运算,然后计算结果为1 的个数,记为此两点之间的汉明值,汉明值是两点间相似度的一种体现,汉明值愈小,两点相似度愈大实现算法时先异或再统计1的个数即可,汉明距越小即相似度越高。

下面的代码是自己根据原理写的,实现的结果并没有很好,以后继续优化代码。

具体代码如下:

//*************************Census*********************
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>

using namespace std;
using namespace cv;

//-------------------定义汉明距离----------------------------
int disparity;
int GetHammingWeight(uchar value);//求1的个数

//-------------------定义Census处理图像函数---------------------
int hWind = 1;//定义窗口大小为(2*hWind+1)
Mat ProcessImg(Mat &Img);//将矩形内的像素与中心像素相比较,将结果存于中心像素中
Mat Img_census, Left_census, Right_census;

//--------------------得到Disparity图像------------------------
Mat getDisparity(Mat &left, Mat &right);

//--------------------处理Disparity图像-----------------------
Mat ProcessDisparity(Mat &disImg);

int ImgHeight, ImgWidth;

//int num = 0;//异或得到的海明距离
Mat LeftImg, RightImg;
Mat DisparityImg(ImgHeight, ImgWidth, CV_8UC1, Scalar::all(0));
Mat DisparityImg_Processed(ImgHeight, ImgWidth, CV_8UC1, Scalar::all(0));
Mat DisparityImg_Processed_2(ImgHeight, ImgWidth, CV_8UC1);
//定义读取图片的路径
string file_dir="C:\\Program Files\\FLIR Integrated Imaging Solutions\\Triclops Stereo Vision SDK\\stereomatching\\Grab_Stereo\\pictures\\";
//定义存储图片的路径
string save_dir= "C:\\Program Files\\FLIR Integrated Imaging Solutions\\Triclops Stereo Vision SDK\\stereomatching\\Grab_Stereo\\Census\\";

int main()
{
    LeftImg = imread(file_dir + "renwu_left.png", 0);
    RightImg = imread(file_dir + "renwu_right.png", 0);
    namedWindow("renwu_left", 1);
    namedWindow("renwu_right", 1);
    imshow("renwu_left", LeftImg);
    waitKey(5);
    imshow("renwu_right", RightImg);
    waitKey(5);
    ImgHeight = LeftImg.rows;
    ImgWidth = LeftImg.cols;

    Left_census= ProcessImg(LeftImg);//处理左图,得到左图的CENSUS图像 Left_census
    namedWindow("Left_census", 1);
    imshow("Left_census", Left_census);
    waitKey(5);
//  imwrite(save_dir + "renwu_left.jpg", Left_census);

    Right_census= ProcessImg(RightImg);
    namedWindow("Right_census", 1);
    imshow("Right_census", Right_census);
    waitKey(5);
//  imwrite(save_dir  + "renwu_right.jpg", Right_census);

    DisparityImg= getDisparity(Left_census, Right_census);
    namedWindow("Disparity", 1);
    imshow("Disparity", DisparityImg);
//  imwrite(save_dir  + "disparity.jpg", DisparityImg);
    waitKey(5);

    DisparityImg_Processed = ProcessDisparity(DisparityImg);
    namedWindow("DisparityImg_Processed", 1);
    imshow("DisparityImg_Processed", DisparityImg_Processed);
//  imwrite(save_dir + "disparity_processed.jpg", DisparityImg_Processed);
    waitKey(0);
    return 0;
}

//-----------------------对图像进行census编码---------------
Mat ProcessImg(Mat &Img)
{
    int64 start, end;
    start = getTickCount();

    Mat Img_census = Mat(Img.rows, Img.cols, CV_8UC1, Scalar::all(0));
    uchar center = 0;

    for (int i = 0; i < ImgHeight - hWind; i++)
    {
        for (int j = 0; j < ImgWidth - hWind; j++)
        {
            center = Img.at<uchar>(i + hWind, j + hWind);
            uchar census = 0;
            uchar neighbor = 0;
            for (int p = i; p <= i + 2 * hWind; p++)//行
            {
                for (int q = j; q <= j + 2 * hWind; q++)//列
                {
                    if (p >= 0 && p <ImgHeight  && q >= 0 && q < ImgWidth)
                    {

                        if (!(p == i + hWind && q == j + hWind))
                        {
                            //--------- 将二进制数存在变量中-----
                            neighbor = Img.at<uchar>(p, q);

                            if (neighbor > center)
                            {
                                census = census * 2;//向左移一位,相当于在二进制后面增添0
                            }
                            else
                            {
                                census = census * 2 + 1;//向左移一位并加一,相当于在二进制后面增添1
                            }
                            //cout << "census = " << static_cast<int>(census) << endl;
                        }
                    }
                }

            }
            Img_census.at<uchar>(i + hWind, j + hWind) = census;
        }
    }
    /*end = getTickCount();
    cout << "time is = " << end - start << " ms" << endl;*/
    return Img_census;
}

//------------得到汉明距离---------------
int GetHammingWeight( uchar value)
{
    int num = 0;
    if (value == 0)
        return 0;
    while (value)
    {
        ++num;
        value = (value - 1)&value;
    }
    return num;
}

//--------------------得到视差图像--------------
Mat getDisparity(Mat &left, Mat &right)
{
    int DSR =16;//视差搜索范围
    Mat disparity(ImgHeight,ImgWidth,CV_8UC1);

    cout << "ImgHeight = " << ImgHeight << "   " << "ImgWidth = " << ImgWidth << endl;
    for (int i = 0; i < ImgHeight; i++)
    {
        for (int j = 0; j < ImgWidth; j++)
        {
            uchar L;
            uchar R;
            uchar diff;

            L = left.at<uchar>(i, j);
            Mat Dif(1, DSR, CV_8UC1);
//          Mat Dif(1, DSR, CV_32F);

            for (int k = 0; k < DSR; k++)
            {
                //cout << "k = " << k << endl;
                int y = j - k;
                if (y < 0)
                {
                    Dif.at<uchar>(k) = 0;
                }
                if (y >= 0)
                {
                    R = right.at<uchar>(i,y);
                    //bitwise_xor(L, R, );
                    diff = L^R;
                    diff = GetHammingWeight(diff);
                    Dif.at<uchar>(k) = diff;
//                  Dif.at<float>(k) = diff;
                }
            }
            //---------------寻找最佳匹配点--------------
            Point minLoc;
            minMaxLoc(Dif, NULL, NULL, &minLoc, NULL);
            int loc = minLoc.x;
            //cout << "loc..... = " << loc << endl;
            disparity.at<uchar>(i,j)=loc*16;
        }
    }
    return disparity;
}

//-------------对得到的视差图进行处理-------------------
Mat ProcessDisparity(Mat &disImg)
{
    Mat ProcessDisImg(ImgHeight,ImgWidth,CV_8UC1);//存储处理后视差图
    for (int i = 0; i < ImgHeight; i++)
    {
        for (int j = 0; j < ImgWidth; j++)
        {
            uchar pixel = disImg.at<uchar>(i, j);
            if (pixel < 100)
                pixel = 0;
            ProcessDisImg.at<uchar>(i, j) = pixel;
        }
    }
    return ProcessDisImg;
}

经过处理后的左图census图像

经过处理后的右图census图像

disparity图像

处理后的disparity图像

以上就是C++实现双目立体匹配Census算法的示例代码的详细内容,更多关于C++双目立体匹配Census算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • c++ 实现文件逐行读取与字符匹配

    C++读取文件 首先我们构造一个txt文件用于测试,比如以下这个名为mindspore.txt的文件(之所以取这个名字,是因为最近在研究mindspore,因此最方便拿到的数据就是mindspore的借口api文档): MindSpore Python API MindSpore Python API mindspore mindspore.common.initializer mindspore.communication mindspore.compression mindspore.con

  • opencv3/C++ FLANN特征匹配方式

    使用函数detectAndCompute()检测关键点并计算描述符 函数detectAndCompute()参数说明: void detectAndCompute( InputArray image, //图像 InputArray mask, //掩模 CV_OUT std::vector<KeyPoint>& keypoints,//输出关键点的集合 OutputArray descriptors,//计算描述符(descriptors[i]是为keypoints[i]的计算描述符

  • opencv C++模板匹配的简单实现

    目录 一简单实现 二函数及原理讲解 1matchTemplate()参数详解 2minMaxLoc()函数 一 简单实现 #include <opencv2/opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { Mat img = imread("52.jpg"); Mat templ = imread("templ.jpg")

  • C++实现双目立体匹配Census算法的示例代码

    上一篇介绍了双目立体匹配SAD算法,这一篇介绍Census算法. Census原理: 在视图中选取任一点,以该点为中心划出一个例如3 × 3 的矩形,矩形中除中心点之外的每一点都与中心点进行比较,灰度值小于中心点记为1,灰度大于中心点的则记为0,以所得长度为 8 的只有 0 和 1 的序列作为该中心点的 census 序列,即中心像素的灰度值被census 序列替换.经过census变换后的图像使用汉明距离计算相似度,所谓图像匹配就是在匹配图像中找出与参考像素点相似度最高的点,而汉明距正是匹配图

  • Java实现8种排序算法的示例代码

    冒泡排序 O(n2) 两个数比较大小,较大的数下沉,较小的数冒起来. public static void bubbleSort(int[] a) { //临时变量 int temp; //i是循环次数,也是冒泡的结果位置下标,5个数组循环5次 for (int i = 0; i < a.length; i++) { //从最后向前面两两对比,j是比较中下标大的值 for (int j = a.length - 1; j > i; j--) { //让小的数字排在前面 if (a[j] <

  • JAVA用递归实现全排列算法的示例代码

    求一个n阶行列式,一个比较简单的方法就是使用全排列的方法,那么简述以下全排列算法的递归实现. 首先举一个简单的例子说明算法的原理,既然是递归,首先说明一下出口条件.以[1, 2]为例 首先展示一下主要代码(完整代码在后面),然后简述 //对数组array从索引为start到最后的元素进行全排列 public void perm(int[]array,int start) { if(start==array.length) { //出口条件 for(int i=0;i<array.length;i

  • c# 实现KMP算法的示例代码

    KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt提出的,因此人们称它为克努特-莫里斯-普拉特操作(简称KMP算法).KMP算法的核心是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的.具体实现就是通过一个next()函数实现,函数本身包含了模式串的局部匹配信息.KMP算法的时间复杂度O(m+n) . 实现方式就不再这里献丑了,网上很多讲解,此处只是记录下c#实现的代码. public class KMP { public

  • python实现经典排序算法的示例代码

    以下排序算法最终结果都默认为升序排列,实现简单,没有考虑特殊情况,实现仅表达了算法的基本思想. 冒泡排序 内层循环中相邻的元素被依次比较,内层循环第一次结束后会将最大的元素移到序列最右边,第二次结束后会将次大的元素移到最大元素的左边,每次内层循环结束都会将一个元素排好序. def bubble_sort(arr): length = len(arr) for i in range(length): for j in range(length - i - 1): if arr[j] > arr[j

  • Python实现七大查找算法的示例代码

    查找算法 -- 简介 查找(Searching)就是根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素.     查找表(Search Table):由同一类型的数据元素构成的集合     关键字(Key):数据元素中某个数据项的值,又称为键值     主键(Primary Key):可唯一的标识某个数据元素或记录的关键字 查找表按照操作方式可分为:         1.静态查找表(Static Search Table):只做查找操作的查找表.它的主要操作是:         ①

  • C#实现一阶卡尔曼滤波算法的示例代码

    //FilterKalman.cs namespace FusionFiltering { public class FilterKalman { private double A = 1; private double B = 0; private double H = 1; private double R; private double Q; private double cov = double.NaN; private double x = double.NaN; public Fil

  • Java实现查找算法的示例代码(二分查找、插值查找、斐波那契查找)

    目录 1.查找概述 2.顺序查找 3.二分查找 3.1 二分查找概述 3.2 二分查找实现 4.插值查找 4.1 插值查找概述 4.2 插值查找实现 5.斐波那契查找 5.1 斐波那契查找概述 5.2 斐波那契查找实现 5.3 总结 1.查找概述 查找表: 所有需要被查的数据所在的集合,我们给它一个统称叫查找表.查找表(Search Table)是由同一类型的数据元素(或记录)构成的集合. 查找(Searching): 根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录).

  • Python和Matlab实现蝙蝠算法的示例代码

    目录 1前言 2 蝙蝠算法原理细讲 3 详细步骤 4Python实现 4.1代码 4.2结果 5Matlab实现 5.1 代码 5.2 结果 5.3 展望 1 前言 蝙蝠算法是2010年杨教授基于群体智能提出的启发式搜索算法,是一种搜索全局最优解的有效方法.该算法基于迭代优化,初始化为一组随机解,然后迭代搜寻最优解,且在最优解周围通过随机飞行产生局部新解,加强局部搜索速度.该算法具有实现简单.参数少等特点. 该算法主要用于目标函数寻优,基于蝙蝠种群利用产生的声波搜索猎物和控制飞行方向的特征来实现

  • C#实现抢红包算法的示例代码

    目录 二倍均值法(公平版) 线段切割法(手速版) 二倍均值法(公平版) 发出一个固定金额的红包,由若干个人来抢,需要满足哪些规则? 1.所有人抢到金额之和等于红包金额,不能超过,也不能少于. 2.每个人至少抢到一分钱. 3.要保证所有人抢到金额的几率相等. 假设剩余红包金额为M,剩余人数为N,那么有如下公式: 每次抢到的金额 = 随机区间 (0, M / N × 2) 这个公式,保证了每次随机金额的平均值是相等的,不会因为抢红包的先后顺序而造成不公平.举个例子: 假设有10个人,红包总额100元

随机推荐