探究MySQL优化器对索引和JOIN顺序的选择

本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序。表结构和数据准备参考本文最后部分"测试环境"。这里主要介绍MySQL优化器的主要执行流程,而不是介绍一个优化器的各个组件(这是另一个话题)。

我们知道,MySQL优化器只有两个自由度:顺序选择;单表访问方式;这里将详细剖析下面的SQL,看看MySQL优化器如何做出每一步的选择。

explain
select *
from
 employee as A,department as B
where
   A.LastName = 'zhou'
 and B.DepartmentID = A.DepartmentID
 and B.DepartmentName = 'TBX';

1. 可能的选择

这里看到JOIN的顺序可以是A|B或者B|A,单表访问方式也有多种,对于A表可以选择:全表扫描和索引`IND_L_D`(A.LastName = 'zhou')或者`IND_DID`(B.DepartmentID = A.DepartmentID)。对于B也有三个选择:全表扫描、索引IND_D、IND_DN。
2. MySQL优化器如何做
2.1 概述

MySQL优化器主要工作包括以下几部分:Query Rewrite(包括Outer Join转换等)、const table detection、range analysis、JOIN optimization(顺序和访问方式选择)、plan refinement。这个案例从range analysis开始。
2.2 range analysis

这部分包括所有Range和index merge成本评估(参考1 参考2)。这里,等值表达式也是一个range,所以这里会评估其成本,计算出found records(表示对应的等值表达式,大概会选择出多少条记录)。

本案例中,range analysis会针对A表的条件A.LastName = 'zhou'和B表的B.DepartmentName = 'TBX'分别做分析。其中:

表A A.LastName = 'zhou' found records: 51
表B B.DepartmentName = 'TBX' found records: 1

这两个条件都不是range,但是这里计算的值仍然会存储,在后面的ref访问方式评估的时候使用。这里的值是根据records_in_range接口返回,而对于InnoDB每次调用这个函数都会进行一次索引页的采样,这是一个很消耗性能的操作,对于很多其他的关系数据库是使用"直方图"的统计数据来避免这次操作(相信MariaDB后续版本也将实现直方图统计信息)。
2.3 顺序和访问方式的选择:穷举

MySQL通过枚举所有的left-deep树(也可以说所有的left-deep树就是整个MySQL优化器的搜索空间),来找到最优的执行顺序和访问方式。
2.3.1 排序

优化器先根据found records对所有表进行一个排序,记录少的放前面。所以,这里顺序是B、A。
2.3.2 greedy search

当表的数量较少(少于search_depth,默认是63)的时候,这里直接蜕化为一个穷举搜索,优化器将穷举所有的left-deep树找到最优的执行计划。另外,优化器为了减少因为搜索空间庞大带来巨大的穷举消耗,所以使用了一个"偷懒"的参数prune_level(默认打开),具体如何"偷懒",可以参考JOIN顺序选择的复杂度。不过至少需要有三个表以上的关联才会有"偷懒",所以本案例不适用。
2.3.3 穷举

JOIN的第一个表可以是:A或者B;如果第一个表选择了A,第二个表可以选择B;如果第一个表选择了B,第二个表可以选择A;

因为前面的排序,B表的found records更少,所以JOIN顺序穷举时的第一个表先选择B(这个是有讲究的)。

(*) 选择第一个JOIN的表为B
  (**) 确定B表的访问方式
    因为B表为第一个表,所以无法使用索引IND_D(B.DepartmentID = A.DepartmentID),而只能使用IND_DN(B.DepartmentName = 'TBX')
      使用IND_DN索引的成本计算:1.2;其中IO成本为1。
      是否使用全表扫描:这里会比较使用索引的IO成本和全表扫描的IO成本,前者为1,后者为2;所以忽略全表扫描
    所以,B表的访问方式ref,使用索引IND_D

(**) 从剩余的表中穷举选出第二个JOIN的表,这里剩余的表为:A
  (**) 将A表加入JOIN,并确定其访问方式
    可以使用的索引为:`IND_L_D`(A.LastName = 'zhou')或者`IND_DID`(B.DepartmentID = A.DepartmentID)
    依次计算使用索引IND_L_D、IND_DID的成本:
    (***) IND_L_D A.LastName = 'zhou'
          在range analysis阶段给出了A.LastName = 'zhou'对应的记录约为:51。
          所以,计算IO成本为:51;ref做IO成本计算时会做一次修正,将其修正为worst_seek(参考)
          修正后IO成本为:15,总成本为:25.2
    (***) IND_DID B.DepartmentID = A.DepartmentID
          这是一个需要知道前面表的结果,才能计算的成本。所以range analysis是无法分析的
          这里,我们看到前面表为B,found_record是1,所以A.DepartmentID只需要对应一条记录就可以了
          因为具体取值不知道,也没有直方图,所以只能简单依据索引统计信息来计算:
            索引IND_DID的列A.DepartmentID的Cardinality为1349,全表记录数为1349
            所以,每一个值对应一条记录,而前面表B只有一条记录,所以这里的found_record计算为1*1 = 1
            所以IO成本为:1,总成本为1.2
    (***) IND_L_D成本为25.2;IND_DID成本为1.2,所以选择后者为当前表的访问方式
  (**) 确定A使用索引IND_DID,访问方式为ref
  (**) JOIN顺序B|A,总成本为:1.2+1.2 = 2.4

(*) 选择第一个JOIN的表为A
  (**) 确定A表的访问方式
       因为A表是第一个表,所以无法使用索引`IND_DID`(B.DepartmentID = A.DepartmentID)
       那么只能使用索引`IND_L_D`(A.LastName = 'zhou')
         使用IND_L_D索引的成本计算,总成本为25.2;参考前面计算;
  (**) 这里访问A表的成本已经是25.2,比之前的最优成本2.4要大,忽略该顺序
       所以,这次穷举搜索到此结束

把上面的过程简化如下:

(*) 选择第一个JOIN的表为B
  (**) 确定B表的访问方式
  (**) 从剩余的表中穷举选出第二个JOIN的表,这里剩余的表为:A
  (**) 将A表加入JOIN,并确定其访问方式
    (***) IND_L_D A.LastName = 'zhou'
    (***) IND_DID B.DepartmentID = A.DepartmentID
    (***) IND_L_D成本为25.2;IND_DID成本为1.2,所以选择后者为当前表的访问方式
  (**) 确定A使用索引IND_DID,访问方式为ref
  (**) JOIN顺序B|A,总成本为:1.2+1.2 = 2.4

(*) 选择第一个JOIN的表为A
  (**) 确定A表的访问方式
  (**) 这里访问A表的成本已经是25.2,比之前的最优成本2.4要大,忽略该顺序

至此,MySQL优化器就确定了所有表的最佳JOIN顺序和访问方式。
3. 测试环境

MySQL: 5.1.48-debug-log innodb plugin 1.0.9

CREATE TABLE `department` (
 `DepartmentID` int(11) DEFAULT NULL,
 `DepartmentName` varchar(20) DEFAULT NULL,
 KEY `IND_D` (`DepartmentID`),
 KEY `IND_DN` (`DepartmentName`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk;

CREATE TABLE `employee` (
 `LastName` varchar(20) DEFAULT NULL,
 `DepartmentID` int(11) DEFAULT NULL,
 KEY `IND_L_D` (`LastName`),
 KEY `IND_DID` (`DepartmentID`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk;

for i in `seq 1 1000` ; do mysql -vvv -uroot test -e 'insert into department values (600000*rand(),repeat(char(65+rand()*58),rand()*20))'; done
for i in `seq 1 1000` ; do mysql -vvv -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),600000*rand())'; done

for i in `seq 1 50` ; do mysql -vvv -uroot test -e 'insert into employee values ("zhou",27760)'; done
for i in `seq 1 200` ; do mysql -vvv -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),27760)'; done
for i in `seq 1 1` ; do mysql -vvv -uroot test -e 'insert into department values (27760,"TBX")'; done

show index from employee;
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+
| Table  | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+
| employee |     1 | IND_L_D |      1 | LastName   | A     |    1349 |   NULL | NULL  | YES | BTREE   |     |
| employee |     1 | IND_DID |      1 | DepartmentID | A     |    1349 |   NULL | NULL  | YES | BTREE   |     |
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+

show index from department;
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
| Table   | Non_unique | Key_name | Seq_in_index | Column_name  | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
| department |     1 | IND_D  |      1 | DepartmentID  | A     |    1001 |   NULL | NULL  | YES | BTREE   |     |
| department |     1 | IND_DN  |      1 | DepartmentName | A     |    1001 |   NULL | NULL  | YES | BTREE   |     |
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+

4. 构造一个Bad case

因为关联条件中MySQL使用索引统计信息做成本预估,所以数据分布不均匀的时候,就容易做出错误的判断。简单的我们构造下面的案例:

表和索引结构不变,按照下面的方式构造数据:

for i in `seq 1 10000` ; do mysql -uroot test -e 'insert into department values (600000*rand(),repeat(char(65+rand()*58),rand()*20))'; done
for i in `seq 1 10000` ; do mysql -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),600000*rand())'; done

for i in `seq 1 1` ; do mysql -uroot test -e 'insert into employee values ("zhou",27760)'; done
for i in `seq 1 10` ; do mysql -uroot test -e 'insert into department values (27760,"TBX")'; done
for i in `seq 1 1000` ; do mysql -uroot test -e 'insert into department values (27760,repeat(char(65+rand()*58),rand()*20))';
done

explain
select *
from
 employee as A,department as B
where
   A.LastName = 'zhou'
 and B.DepartmentID = A.DepartmentID
 and B.DepartmentName = 'TBX';
+----+-------------+-------+------+-----------------+---------+---------+---------------------+------+-------------+
| id | select_type | table | type | possible_keys  | key   | key_len | ref         | rows | Extra    |
+----+-------------+-------+------+-----------------+---------+---------+---------------------+------+-------------+
| 1 | SIMPLE   | A   | ref | IND_L_D,IND_DID | IND_L_D | 43   | const        |  1 | Using where |
| 1 | SIMPLE   | B   | ref | IND_D,IND_DN  | IND_D  | 5    | test.A.DepartmentID |  1 | Using where |
+----+-------------+-------+------+-----------------+---------+---------+---------------------+------+-------------+

可以看到这里,MySQL执行计划对表department使用了索引IND_D,那么A表命中一条记录为(zhou,27760);根据B.DepartmentID=27760将返回1010条记录,然后根据条件DepartmentName = 'TBX'进行过滤。

这里可以看到如果B表选择索引IND_DN,效果要更好,因为DepartmentName = 'TBX'仅仅返回10条记录,再根据条件A.DepartmentID=B.DepartmentID过滤之。

(0)

相关推荐

  • MySQL前缀索引导致的慢查询分析总结

    前端时间跟一个DB相关的项目,alanc反馈有一个查询,使用索引比不使用索引慢很多倍,有点毁三观.所以跟进了一下,用explain,看了看2个查询不同的结果. 不用索引的查询的时候结果如下,实际查询中速度比较块. 复制代码 代码如下: mysql> explain select * from rosterusers limit 10000,3 ; +----+-------------+-------------+------+---------------+------+---------+-

  • 对MySQL慢查询日志进行分析的基本教程

    0.首先查看当前是否开启慢查询: (1)快速办法,运行sql语句 show VARIABLES like "%slow%" (2)直接去my.conf中查看. my.conf中的配置(放在[mysqld]下的下方加入) [mysqld] log-slow-queries = /usr/local/mysql/var/slowquery.log long_query_time = 1 #单位是秒 log-queries-not-using-indexes 使用sql语句来修改:不能按照m

  • MySQL慢查询查找和调优测试

    编辑 my.cnf或者my.ini文件,去除下面这几行代码的注释: 复制代码 代码如下: log_slow_queries = /var/log/mysql/mysql-slow.log long_query_time = 2 log-queries-not-using-indexes 这将使得慢查询和没有使用索引的查询被记录下来. 这样做之后,对mysql-slow.log文件执行tail -f命令,将能看到其中记录的慢查询和未使用索引的查询. 随便提取一个慢查询,执行explain: 复制代

  • mysql 开启慢查询 如何打开mysql的慢查询日志记录

    mysql慢查询日志对于跟踪有问题的查询非常有用,可以分析出当前程序里有很耗费资源的sql语句,那如何打开mysql的慢查询日志记录呢? 其实打开mysql的慢查询日志很简单,只需要在mysql的配置文件里(windows系统是my.ini,linux系统是my.cnf)的[mysqld]下面加上如下代码: 复制代码 代码如下: log-slow-queries=/var/lib/mysql/slowquery.log long_query_time=2 注: log-slow-queries

  • mysqlsla慢查询分析工具使用笔记

    且该工具自带相似SQL语句去重的功能,能按照指定方式进行排序(比如分析慢查询日志的时候,让其按照SQL语句执行时间逆排序,就能很方便的定位出问题所在) + ------------- 安装mysqlsla慢查询日志分析工具 ------------- + 复制代码 代码如下: yum -y install perl-ExtUtils-CBuilder perl-ExtUtils-MakeMakeryum -y install perl-DBI perl-DBD-MySQLyum -y insta

  • 深入mysql慢查询设置的详解

    在web开发中,我们经常会写出一些SQL语句,一条糟糕的SQL语句可能让你的整个程序都非常慢,超过10秒一般用户就会选择关闭网页,如何优化SQL语句将那些运行时间 比较长的SQL语句找出呢?MySQL给我们提供了一个很好的功能,那就是慢查询!所谓的慢查询就是通过设置来记录超过一定时间的SQL语句!那么如何应用慢查询呢? 1.开启MySQL的慢查询日志功能默认情况下,MySQL是不会记录超过一定执行时间的SQL语句的.要开启这个功能,我们需要修改MySQL的配置文件,windows下修改my.in

  • 记一次因线上mysql优化器误判引起慢查询事件

    前言: 收到疯狂的慢查询及请求超时报警,通过metrics分析出来自mysql请求的异常,cli -> show proceslist 看到很多慢查询. 先前该sql是没有的,后面因为数据量的增长才出现了这问题. 虽然feeds表大到一个亿,但因为feeds流信息有近期热的特征,所以不是因为 innodb_buffer_pool_size 低效引起的io频繁. 后来经过进一步explain执行计划分析得出了原因,mysql查询优化器选择了他认为高效的索引. mysql查询优化器大多数情况是靠谱的

  • mysql正确安全清空在线慢查询日志slow log的流程分享

    1, see the slow log status; mysql> show variables like '%slow%';+---------------------+------------------------------------------+| Variable_name       | Value                                    |+---------------------+-------------------------------

  • MySQL慢查询优化之慢查询日志分析的实例教程

    数据库响应慢问题最多的就是查询了.现在大部分数据库都提供了性能分析的帮助手段.例如Oracle中会帮你直接找出慢的语句,并且提供优化方案.在MySQL中就要自己开启慢日志记录加以分析(记录可以保存在表或者文件中,默认是保存在文件中,我们系统使用的就是默认方式). 先看看MySQL慢查询日志里面的记录长什么样的: Time Id Command Argument # Time: 141010 9:33:57 # User@Host: root[root] @ localhost [] Id: 1

  • MYSQL5.7.9开启慢查询日志的技巧

    用MYSQL 5.7.9 作为ZABBIX 2.4.7 的监控数据库. 前段时间开启了慢查询日志, 后来发现慢查询日志膨胀到了700M 查看最后100条 大部分都是 0.1 秒的 后来想改, 以前是动态设置的 set global slow_query_log=1; 方式的 . 然后想直接用配置文件/etc/my.cnf 配慢查询 # Remove leading # and set to the amount of RAM for the most important data # cache

随机推荐