MySQL优化之缓存优化(续)

MySQL 内部处处皆缓存,等什么时候看了MySQL的源码,再来详细的分析缓存的是如何利用的。这部分主要将各种显式的缓存优化:

  1. 查询缓存优化
  2. 结果集缓存
  3. 排序缓存
  4. join 连接缓存
  5. 表缓存Cache 与表结构定义缓存Cache
  6. 表扫描缓存buffer
  7. MyISAM索引缓存buffer
  8. 日志缓存
  9. 预读机制
  10. 延迟表与临时表

1、查询缓存优化

查询缓存不仅将查询语句结构缓存起来,还将查询结果缓存起来。一段时间内,如果是同样的SQL,则直接从缓存中读取结果,提高查找数据的效率。但当缓存中的数据与硬盘中的数据不一致时,缓存就会失效。

mysql> show variables like '%query_cache%';
+------------------------------+---------+
| Variable_name        | Value  |
+------------------------------+---------+
| have_query_cache       | YES   |
| query_cache_limit      | 1048576 |
| query_cache_min_res_unit   | 4096  |
| query_cache_size       | 1048576 |
| query_cache_type       | OFF   |
| query_cache_wlock_invalidate | OFF   |
+------------------------------+---------+

have_query_cache 是否支持查询缓存。

query_cache_limit 如果某条select语句的结果集大小超过了querycachelimit的值时,这个结果集将不会被添加到查询缓存。

query_cache_min_res_unit 查询缓存是以块来申请内存空间的,每次申请的块大小为设定值。4K 是非常一个合理的值,不必修改。

query_cache_size 查询缓存的大小。

query_cache_type 查询缓存的类型,值有 0(OFF)、1(ON)、2(DEMOND)。OFF表示查询缓存是关闭的。ON 表示查询总是先到查询缓存中去查找,除非在select 语句中包含sql_no_cache选项。 DEMOND 表示不适用缓存,除非在select 语句中包含sql_cache选项。

query_cache_wlock_invalidate 该参数用于设置行级排它锁与查询缓存之间的关系,默认为为0(OFF),表示施加行级排它所的同时,该表的所有查询缓存依然有效。如果设置为1(ON),表示事假行级排它锁的同时,该表的所有查询缓存失效。

查看查询缓存的命中率

mysql> show status like 'Qcache%';
+-------------------------+---------+
| Variable_name      | Value  |
+-------------------------+---------+
| Qcache_free_blocks   | 1    |
| Qcache_free_memory   | 1031360 |
| Qcache_hits       | 0    |
| Qcache_inserts     | 0    |
| Qcache_lowmem_prunes  | 0    |
| Qcache_not_cached    | 0    |
| Qcache_queries_in_cache | 0    |
| Qcache_total_blocks   | 1    |
+-------------------------+---------+

查看当前缓存的状态信息:

Qcache_free_blocks

表示查询缓存中处以重现状态的内存块数(碎片数量)。如果Qcache_free_blocks 的值较大,则意味着查询缓存中碎片比较多,表明查询结果集较小,此时可以减小query_cache_min_res_unit的值。使用flush query cache 会对缓存中的若干个碎片进行整理,从而得到一个比较大的空闲块。缓存碎片率 = Qcache_free_blocks/ Qcache_total_blocks * 100%

Qcache_free_memory

表示当前MySQL服务实例的查询缓存还有多少可用内存。

Qcache_hits

表示使用查询缓存的次数,该值会依次增加。如果Qcache_hits比较大,则说明查询缓存使用的非常频繁,此时需要增加查询缓存。

Qcache_inserts

表示查询缓存中此前总共缓存过多少条select 语句的结果集。

Qcache_lowmen_prunes

表示因为查询缓存已满而溢出,导致MySQL删除的查询结果个数。如果该值比较大,则表明查询缓存过小。

Qcache_not_cached

表示没有进入查询缓存的select个数

Qcache_queryies_in_cache

表示查询缓存中缓存这多少条select语句的结果集

Qcache_total_blocks

查询缓存的总个数

缓存命中率的计算方式: 查询缓存的命中率 = Qcache_hits / Com_select * 100%

其中Com_select为当前MySQL实例执行select 语句的个数。一般情况下Com_select = Qcache_insert + Qcache_not_cached。而 Qcache_not_cached中包含有数据频繁变化而导致查询缓存失效的select语句,因此命中率一般来说较低。如果抛开失效的因素,查询缓存的命中率 = Qcache_hits / (Qcache_hits + Qcache_inserts) 如果使用这种公式计算出查询缓存的命中率比较高的话,这就意味着大部分select语句都命中了查询缓存。

通过如下命令查看当前系统一共执行了多少条select语句

mysql> show status like 'Com_select';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Com_select  | 1   |
+---------------+-------+

2、结果集缓存

结果集缓存是会话缓存,MySQL客户机成功连接服务器之后。MySQL服务器会为每个MySQL客户机保留结果集缓存。缓存MySQL客户机连接线程的连接信息以及缓存返回MySQL客户机的结果集信息,当MySQL客户机向服务器发送select 语句时,MySQL将select语句的执行结果暂存在结果集缓存中。结果集的缓存大小由 net_buffer_length 参数值定义:

mysql> show variables like 'net_buffer_length';
+-------------------+-------+
| Variable_name   | Value |
+-------------------+-------+
| net_buffer_length | 16384 |
+-------------------+-------+

如果结果集超过net_buffer_length设置的值,则自动扩充容量,但不超过:max_allowd_packet的阈限值:

mysql> show variables like 'max_allowed_packet';
+--------------------+---------+
| Variable_name   | Value  |
+--------------------+---------+
| max_allowed_packet | 4194304 |
+--------------------+---------+

3、排序缓存

MySQL 常用的有InnoDB 和MyISAM 两种数据存储引擎。因此在优化的时候,每种引擎都会采用适合自己引擎的优化方法。关于MySQL 与InnoDB 表结构文件和数据日志文件的不同,可以先看本人的博客MySQL 日志系统,以便对这些基础概念有足够的了解,接下来看引擎的优化的方法才能如鱼得水,不觉得枯燥。

1、普通排序缓存

排序缓存是会话缓存, 如果客户机向服务端发送的SQL语句中含有设计排序的order by 或者group by 子句。MySQL就会选择相应的排序算法,在普通排序索引上进行排序,提升排序速度。普通排序索引的大小由sort_buffer_size 参数定义,如果要提升排序的速度,首先应该添加合适的索引,此后则应该增大排序索引缓存sort_buffer_size.

mysql> select @@global.sort_buffer_size / 1024;
+----------------------------------+
| @@global.sort_buffer_size / 1024 |
+----------------------------------+
|             256.0000 |
+----------------------------------+
1 row in set (0.00 sec)

接下来我们来看下与排序缓存相关的参数有哪些:

mysql> show variables like '%sort%';
+--------------------------------+---------------------+
| Variable_name         | Value        |
+--------------------------------+---------------------+
| innodb_disable_sort_file_cache | OFF         |
| innodb_ft_sort_pll_degree   | 2          |
| innodb_sort_buffer_size    | 1048576       |
| max_length_for_sort_data    | 1024        |
| max_sort_length        | 1024        |
| myisam_max_sort_file_size   | 9223372036853727232 |
| myisam_sort_buffer_size    | 8388608       |
| sort_buffer_size        | 262144       |
+--------------------------------+---------------------+

mysql> show status like '%sort%';
+-------------------+-------+
| Variable_name   | Value |
+-------------------+-------+
| Sort_merge_passes | 0   |
| Sort_range    | 0   |
| Sort_rows     | 0   |
| Sort_scan     | 0   |
+-------------------+-------+

max_length_for_sort_data

默认大小为1024字节,对每一列的进行排序操作是,如果该列的值长度较长,通过增加该参数来提升MySQL性能。

max_sort_length

order by 或者 group by 的时候使用该列的前 max_sort_length字节进行排序,排序操作完成后,会将此次排序的信息记录到本次会话的状态里。

Sort_merge_passes

使用临时文件完成排序操作的次数。MySQL在进行排序操作时,首先尝试在普通排序缓存中完成排序。如果缓存空间不够用,MySQL将利用缓存进行多次排序。并把每次的排序结果存放到临时文件中,最后再把临时文件中的数据做一次排序。Sort_merge_passes值就是记录了使用文件进行排序的次数。由于文件排序要牵涉到读文件,打开文件句柄,然后关闭文件等操作。所以读取文件的系统消耗比较大,通过增大普通排序缓存sort_buffer_size来减少使用临时文件排序的次数,从而增加排序的性能。

Sort_range

使用范围排序的次数

Sort_rows

已经排序的记录行数

Sort_scan

通过全表扫描完成排序的次数

2、MyISAM排序缓存

当我们使用alter table 语句或者create index 语句创建MyISAM表的索引,或者导入一部分数据使用load data infile path,这些操作都会导致索引被重建,重建索引时需要对索引字段进行排序操作,为了加快重建索引的效率,MyISAM提供了排序缓存用于实现索引的排序工作,这些方法都是尽量是排序的工作在内存中完成。MyISAM排序缓存的大小由myisam_sort_buffer_size定义。索引重建之后,该缓存立马释放。

但是当排序的缓存超过myisam_sort_buffer_size的阈限时,此时就需要在临时文件中完成索引字段的排序工作,外存临时文件的大小由myisam_max_sort_file_size参数设定,索引重建后,临时文件立即删除。

mysql> select @@global.myisam_sort_buffer_size/1024;
+---------------------------------------+
| @@global.myisam_sort_buffer_size/1024 |
+---------------------------------------+
|               8192.0000 |
+---------------------------------------+

mysql> select @@global.myisam_max_sort_file_size /1024;
+------------------------------------------+
| @@global.myisam_max_sort_file_size /1024 |
+------------------------------------------+
|          9007199254739967.7734 |
+------------------------------------------+

3、InnoDB 排序缓存

和MyISAM引擎类似,当执行alter table 、create index 创建索引是,InnoDB提供了3个InnoDB排序缓存用于实现索引的排序,每个缓存的大小由innodb_sort_buffer_size定义。

mysql> select @@global.innodb_sort_buffer_size/1024;
+---------------------------------------+
| @@global.innodb_sort_buffer_size/1024 |
+---------------------------------------+
|               1024.0000 |
+---------------------------------------+

4、join 连接缓存

join缓存是会话缓存,如果两张表相连,但是却无法使用索引(这时使用join连接缓存的前提),MySQL将为每张表分配join 连接缓存。

mysql> select @@global.join_buffer_size/1024;
+--------------------------------+
| @@global.join_buffer_size/1024 |
+--------------------------------+
|            256.0000 |
+--------------------------------+

join_buffer_size 定义了连接缓存的大小,如上图,默认为256;

5、表缓存Cache 与表结构定义缓存Cache

MySQL 服务访问数据库中的表时,实际上MySQL是做的文件的读取操作。MySQL的数据都是存在硬盘上的一个个文件,这个和一些内存的型的数据库不同。当我们查询一张表,使用select 语句时,不考虑使用查询缓存,首先要操作系统打开该文件,产生该文件的描述符。操作系统将文件描述符交给MySQL,MySQL才能对数据库进行CURD的操作。打开文件、产生文件描述符都需要消耗系统资源,造成访问延时。MySQL将已经打开的文件,包括文件描述符缓存起来,以后再次访问该文件时,就无需打开该文件,提高了读取文件的效率。

表结构并不经常变化,当对表进行访问的时候,除了将该表植入MySQL的表缓存外,MySQL还将表结构放入了表结构定义缓存中,供下次使用。

mysql> show variables like 'table%';
+----------------------------+-------+
| Variable_name       | Value |
+----------------------------+-------+
| table_definition_cache   | 1400 |
| table_open_cache      | 2000 |
| table_open_cache_instances | 1   |
+----------------------------+-------+

mysql> show variables like '%open%';
+----------------------------+----------+
| Variable_name       | Value  |
+----------------------------+----------+
| have_openssl        | DISABLED |
| innodb_open_files     | 2000   |
| open_files_limit      | 65535  |
| table_open_cache      | 2000   |
| table_open_cache_instances | 1    |
+----------------------------+----------+

table_open_cache

设定了可以缓存表以及视图的数量限制

table_definition_cache

设定了可以存储多少张frm 表结构

对于MySQL MyISAM引擎来说,表结构包含MYI 和MYD 以及表结构frm, 当访问MyISAM 引擎的时候,需要一次性打开两个文件(MYI 、MYD),产生两个文件描述符。

open_files_limit

打开文件的上限

innodb_open_files

如果InnoDB 表使用的是独立表空间文件(ibd),该参数设定同一时间能够打开的文件数量。

以下是和打开表相关的状态值:

mysql> show status like 'Open%';
+--------------------------+-------+
| Variable_name      | Value |
+--------------------------+-------+
| Open_files        | 18  |
| Open_streams       | 0   |
| Open_table_definitions  | 70  |
| Open_tables       | 63  |
| Opened_files       | 125  |
| Opened_table_definitions | 0   |
| Opened_tables      | 0   |
+--------------------------+-------+

6、表扫描缓存buffer

表扫描分为顺序扫描(Sequential Scan)以及随机扫描(Random Scan) 两种方式

顺序扫描 当MyISAM表没有建索引时,查询速度将进行全表扫描,效率很低。为了提升全表扫描的速度,MySQL提供了顺序扫描缓存(read buffer)。此时MySQL按照存储数据的存储顺序因此读出全部的数据块,每次读取的数据块缓存在顺序扫描缓存中,当read buffer写满之后,将数据返还给上层调用者。

随机扫描

当表里有缓存,扫描表的时候,会将表的索引字段放进内存里先拍好序,然后按照已经拍好的顺序去硬盘中查找数据。

7、MyISAM索引缓存buffer

通过缓存MYI索引文件的内容,可以加快读取索引的速度以及索引的速度。索引缓存只对MyISAM表起作用,且被所有线程共享。查询语句或者更新索引通过索引访问表数据的时候,MySQL首先检查索引缓存中是否已经存在需要的索引信息,如果有通过缓存中的索引可以直接访问到索引对应的MYD文件。如果没有,则会读取MYI文件,并将相应的索引数据读取到缓存中。索引缓存对MyISAM表的访问性能起到了至关重要的作用。

mysql> show variables like 'key%';
+--------------------------+---------+
| Variable_name      | Value  |
+--------------------------+---------+
| key_buffer_size     | 8388608 (8M)|
| key_cache_age_threshold | 300   |
| key_cache_block_size   | 1024  |
| key_cache_division_limit | 100   |
+--------------------------+---------+

key_buffer_size

设置索引缓存的大小,默认是8M。建议提升。

key_cache_block_size

指定每个索引缓存的区块大小,建议设置为4K,即4096

key_cache_division_limit

为了有效的使用缓存。默认情况下MySQL降缓存划分为两个索引缓存区,温区(warm area) 以及热区(hot area)。key_cache_division_limit参数以百分比的形式向曾哥索引缓存划分为多个区域。当默认值是100的时候,表示索引缓存只有温区,将启用LRU算法淘汰索引缓存中的索引。

key_cahe_age_threshold

控制温区域热区中的索引何时升级何时降级。如果该值小于100,则有热区。移动算法大致类似与LRU算法。

查看当前MySQL服务实例索引读以及索引写的状态值:

mysql> show status like 'Key%';
+------------------------+-------+
| Variable_name     | Value |
+------------------------+-------+
| Key_blocks_not_flushed | 0   |
| Key_blocks_unused   | 6698 |
| Key_blocks_used    | 0   |
| Key_read_requests   | 0   |
| Key_reads       | 0   |
| Key_write_requests   | 0   |
| Key_writes       | 0   |
+------------------------+-------+

8、日志缓存

日志缓存分为二进制日志缓存以及InnoDB重做日志缓存

1、二进制日志缓存

mysql> show variables like '%binlog%cache%';
+----------------------------+----------------------+
| Variable_name       | Value        |
+----------------------------+----------------------+
| binlog_cache_size     | 32768        |
| binlog_stmt_cache_size   | 32768        |
| max_binlog_cache_size   | 18446744073709547520 |
| max_binlog_stmt_cache_size | 18446744073709547520 |
+----------------------------+----------------------+

mysql> show status like '%binlog%cache%';
+----------------------------+-------+
| Variable_name       | Value |
+----------------------------+-------+
| Binlog_cache_disk_use   | 0   |
| Binlog_cache_use      | 0   |
| Binlog_stmt_cache_disk_use | 0   |
| Binlog_stmt_cache_use   | 0   |
+----------------------------+-------+

Mysql 进行创建或者更新的数据的时候,会记录一条二进制日志。然而频繁的进行I/O操作将对MySQL造成较大的性能影响。因此MySQL开辟了一个二进制日志缓存binlog_cache_size。首先将操作写入二进制日志,当操作成功之后,将二进制日志写入硬盘。

2、InnoDB重做日志缓存

事务在commit前,会将产生的重做日志写入InnoDB重做日志缓存,然后InnoDB【择机】执行轮询策略,将缓存中的重做日志文件写入ib_logfile0 以及ib_logfile1重做日志中。

mysql> show variables like 'innodb_log_buffer_size';
+------------------------+---------+
| Variable_name     | Value  |
+------------------------+---------+
| innodb_log_buffer_size | 8388608 |
+------------------------+---------+

InnoDB重做日志缓存可以确保事务提交前,事务运行期间产生的重做日志保存在InnoDB的日志缓存中,但并不写入重做日志文件中。写入时机由innodb_flush_log_at_trx_commit参数控制。

mysql> show variables like 'innodb_flush_log%';
+--------------------------------+-------+
| Variable_name         | Value |
+--------------------------------+-------+
| innodb_flush_log_at_timeout  | 1   |
| innodb_flush_log_at_trx_commit | 1   |
+--------------------------------+-------+

0:当缓存中重做日志文件以每秒一次的频率写入硬盘缓存,并且同时会更新到硬盘。

1:在每次事务提交的时候,将缓存中重做日志写到重做日志文件,同时写入硬盘,默认是该行为。

2:事务提交的时候,写到缓存,但并不触发文件系统到硬盘的同步操作,但此外每秒一次同步硬盘。

9、预读机制

预读机制主要利用了前文MySQL优化:一 、缓存优化所描述的原理。即局部性特征,空间局部性,和时间局部性,这里不再赘述。

1、InnoDB预读机制

InnoDB采用预读机制,将“未来即将访问的数据”包括索引加载到预读缓存中,进而提升数据的读性能。InnoDB支持顺序预读(linear read ahead)与随机预读(random read ahead)两种方式。

数据块(page)是InnoDB硬盘管理的最小单位,一个区由64个连续的数据块构成,对于顺序预读而言,InnoDB首选将该数据所在数据块置入InnoDB缓存池中,可以预测这些数据块的后续块很快就会被访问,于是这些数据块以及前置的数据块会被置入内存中。根据innodb_read_ahead_threshold参数设定预读前后多少个数据块。

mysql> show variables like 'innodb_read_ahead%';
+-----------------------------+-------+
| Variable_name        | Value |
+-----------------------------+-------+
| innodb_read_ahead_threshold | 56  |
+-----------------------------+-------+

2、索引缓存预加载

数据库管理员可以使用MySQL命令 load index into cache 预加载MyISAM表索引

10、MyISAM表延迟插入

mysql> show variables like '%delayed%';
+----------------------------+-------+
| Variable_name       | Value |
+----------------------------+-------+
| delayed_insert_limit    | 100  |
| delayed_insert_timeout   | 300  |
| delayed_queue_size     | 1000 |
| max_delayed_threads    | 20  |
| max_insert_delayed_threads | 20  |
+----------------------------+-------+

看到这个延迟插入的功能,想起项目里一个有点类似的功能,启发了自己的思路。

使用方法为:insert delyed into table values(*);

delyed_insert_limit

默认值为100.当向MySQL表延迟插入100行记录后,检查该表是否有select语句在等待执行,如果有,暂停insert语句执行。

delayed_insert_timeout

在超时范围内,如果delayed 队列里没有数据,延迟插入线程将关掉。

delayed_queue_size

延迟插入的队列长度,超出将阻塞,直到有足够的空间。

max_delayed_threads

延迟插入的线程数。

MyISAM表的批量延迟插入

类似 insert into table values(1),values(2),values(n)。MyISAM将进行批量插入。先将插入的数据放入缓存。当缓存被写满或者提交完毕了,MySQL一次性的将缓存中的写入硬盘。通过批量插入可以大大缩减MySQL客户机与服务机的连接语法分析等消耗,使得效率比分开执行单个insert语句快的多。

mysql> select @@global.bulk_insert_buffer_size/(1024*1024);
+----------------------------------------------+
| @@global.bulk_insert_buffer_size/(1024*1024) |
+----------------------------------------------+
|                    8.0000 |
+----------------------------------------------+

默认批量插入的大小为8M。如果业务上有需要,可以设定的大一些,以提高批量插入的性能。

MyISAM表的索引延迟更新

索引可以加快数据检索,但是对于更新来说,不仅需要修改记录,可能还需要修改索引,因此索引会导致数据更新操作变慢,如果将MySQL的delay_key_write参数设置为1(ON),可以弥补这一缺陷。开启后更新操作修改数据的时候先将数据的更新提交到硬盘,索引的更新全部在索引缓存里完成。在关闭表的时候,一起更新到硬盘,这样就可以使索引更新的更快。仅对MyISAM有效。

mysql> show variables like 'delay_key_write';
+-----------------+-------+
| Variable_name  | Value |
+-----------------+-------+
| delay_key_write | ON  |
+-----------------+-------+

InnoDB延迟更新

非聚簇索引的更新操作通常会带来随机I/O,降低InoDB的性能。当更新(insert, delete ,update=insert+delete)非聚簇索引的数据时,会先检查非聚簇索引页是否位于InnoDB缓存池中,如果是直接更新,否则先将“信息修改”记录在更新缓存中(change buffer)

这篇博客的内容比较多,总结提炼下来以备以后查看。对整个MySQL的优化先有个整体的框架,徐徐渐进慢慢进步。这些参数可以不用记忆,用到的时候到博客中查找或者百度即可。了解道,知道术,就可以完成优化的过程。知道原理比记忆枯燥的原理要简单的多。对MySQL优化感兴趣的博友可以关注我的博客,以便看到后续的分享。

(0)

相关推荐

  • 使用Memcache缓存mysql数据库操作的原理和缓存过程浅析

    对于大型网站如facebook,ebay等网站,如果没有Memcache做为中间缓存层,数据访问不可能吃得消,对于一般网站,只要具备独立的服务器,完全可以通过配置Memcache提高网站访问速度和减少数据库压力,这里主要讨论一下Memcache和MySQL数据库交互过程的流程关系,了解Memcache的中间缓存层作用,从而深入了解Memcache机制原理. Memcache和MySQL交互流程图 如上图,传统的查询方法是直接查询数据库,数据库将结果返回给查询语句,而当有Memcache中间缓存层

  • mysql的查询缓存说明

    对mysql查询缓存从五个角度进行详细的分析:Query Cache的工作原理.如何配置.如何维护.如何判断查询缓存的性能.适合的业务场景分析. 工作原理 查询缓存的工作原理,基本上可以概括为:缓存SELECT操作或预处理查询(注释:5.1.17开始支持)的结果集和SQL语句:新的SELECT语句或预处理查询语句,先去查询缓存,判断是否存在可用的记录集,判断标准:与缓存的SQL语句,是否完全一样,区分大小写: 查询缓存对什么样的查询语句,无法缓存其记录集,大致有以下几类:查询语句中加了SQL_N

  • mysql 设置查询缓存

    可将如下语句 query_cache_size = 268435456 query_cache_type = 1 query_cache_limit = 1048576 存放到/etc/my.cnf文件的[mysqld]下 然后重启mysql数据库 service mysqld restart 就会启动mysql的缓存机制Query Cache. 在使用中,查询缓存会存储一个 SELECT 查询的文本与被传送到客户端的相应结果. 如果之后接收到一个同样的查询,服务器将从查询缓存中检索结果,而不是

  • MySQL优化之缓存优化

    高兴的是有博友mark了我的文章.我知道mark之后,很少会再来继续关注的.但是从侧面说明了在博友点开博客的同时,他感觉这篇博客是有价值的,是能够弥补他的知识欠缺.一篇博客最重要的是对自己有用,如果再对别人有用,那是最好的结果.我坚持写博客的目的是为了当自己遗忘知识点的时候,能够最快的找到靠谱的解决方案.当自己的归纳的知识,再记起来就会遗忘的慢一点,等时间久了,这部分知识终于化成了自己脱口而出的话,那就再也不怕遗忘了.这篇博客将继续讲MySQL的内容,这篇讲缓存优化,讲的过程也是我学习的过程.

  • MySQL高速缓存启动方法及参数详解(query_cache_size)

    MySQL query cache从4.1版本开始提供了,不过值今天本人才对其进行研究.默认配置下,MySQL的该功能是没有启动的,可能你通过show variables like '%query_cache%';会发现其变量have_query_cache的值是yes,MYSQL初学者很容易以为这个参数为YES就代表开启了查询缓存,实际上是不对的,该参数表示当前版本的MYSQL是否支持Query Cache,实际上是否开启查询缓存是看另外一个参数的值:query_cache_size ,该值为

  • MySQL DBA教程:Mysql性能优化之缓存参数优化

    数据库属于 IO 密集型的应用程序,其主要职责就是数据的管理及存储工作.而我们知道,从内存中读取一个数据库的时间是微秒级别,而从一块普通硬盘上读取一个IO是在毫秒级别,二者相差3个数量级.所以,要优化数据库,首先第一步需要优化的就是 IO,尽可能将磁盘IO转化为内存IO.本文先从 MySQL 数据库IO相关参数(缓存参数)的角度来进行IO优化: 一.query_cache_size/query_cache_type (global)    Query cache 作用于整个 MySQL Inst

  • 浅析MySQL内存的使用说明(全局缓存+线程缓存)

    首先我们来看一个公式,MySQL中内存分为全局内存和线程内存两大部分(其实并不全部,只是影响比较大的 部分): 复制代码 代码如下: per_thread_buffers=(read_buffer_size+read_rnd_buffer_size+sort_buffer_size+thread_stack+join_buffer_size+binlog_cache_size+tmp_table_size)*max_connectionsglobal_buffers=innodb_buffer_

  • MySQL缓存的查询和清除命令使用详解

    Mysql 查询缓存 查询缓存的作用就是当查询接收到一个和之前同样的查询,服务器将会从查询缓存种检索结果,而不是再次分析和执行上次的查询.这样就大大提高了性能,节省时间. 1.配置查询缓存 修改配置文件,修改[mysqld]下的query_cache_size和query_cache_type(如果没有则添加).其中query_cache_size表示缓存的大小,而query_cache_type有3个值,表示缓存那种类  型的select结果集,query_cache_type各个值如下: 0

  • 清空mysql 查询缓存的可行方法

    对一条sql进行优化时,发现原本很慢的一条sql(将近1分钟) 在第二次运行时, 瞬间就完成了(0.00sec) 这是因为mysql对同一条sql进行了缓存,服务器直接从上次的查询结果缓存中读取数据,而不是重新分析.执行sql. 可通过如下方法清空查询缓存 reset query cache;

  • MySQL优化之缓存优化(续)

    MySQL 内部处处皆缓存,等什么时候看了MySQL的源码,再来详细的分析缓存的是如何利用的.这部分主要将各种显式的缓存优化: 查询缓存优化 结果集缓存 排序缓存 join 连接缓存 表缓存Cache 与表结构定义缓存Cache 表扫描缓存buffer MyISAM索引缓存buffer 日志缓存 预读机制 延迟表与临时表 1.查询缓存优化 查询缓存不仅将查询语句结构缓存起来,还将查询结果缓存起来.一段时间内,如果是同样的SQL,则直接从缓存中读取结果,提高查找数据的效率.但当缓存中的数据与硬盘中

  • MySQL优化之连接优化

    上文MySQL优化之缓存优化 这篇文章中提到了一个很重要的概念,就是show variables是用来表示系统编译或者配置在my.cnf中的变量值.而show status则称之为状态值,显示的是当前服务实例运行所具有的状态信息,是一个动态改变的值.因此常用来观测当前MySQl的运行是否正常,如果不正常那么依靠调整静态参数来提高MySQL的性能.所以明白这两个概念的不同,是后面调优的基础. MySQL 连接优化 记得有一次在公司内部连接MySQL的时候,总是连接不上.找到DBA后,经过排查原因,

  • MySQL查询缓存优化示例详析

    目录 一.概述 二.查询优化内容 1.查询缓存的原理 2.查询缓存的优缺点 3.不能应用查询缓存的内容 4.查询缓存相关的服务器变量 5.SELECT语句的缓存控制 6.查询缓存相关的状态变量 7.查询的优化的检查路线 8.命中率和内存使用率估算 9.版本差异 三.总结 一.概述 在日常使用数据库中,80%的数据请求都是查询,而余下的20%是更新或者增加数据.如何提升查询性能,便是提高数据库处理能力的关键. 二.查询优化内容 1.查询缓存的原理 查询的路线图: 缓存SELECT操作或预处理查询的

  • 101个MySQL的配置和优化的提示

    MySQL是一个功能强大的开源数据库.随着越来越多的数据库驱动的应用程序,人们一直在推动MySQL发展到它的极限.这里是101条调节和优化 MySQL安装的技巧.一些技巧是针对特定的安装环境的,但这些思路是通用的.我已经把他们分成几类,来帮助你掌握更多MySQL的调节和优化技巧. MySQL 服务器硬件和操作系统调节: 1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中--在内存中访问文件时的速度要比在硬盘中访问时快的多.2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读

  • CI框架数据库查询缓存优化的方法

    本文实例讲述了CI框架数据库查询缓存优化的方法.分享给大家供大家参考,具体如下: CI框架中有个比较好的查询优化,就是数据库缓存优化 1.开启缓存 //在application/config.php中开启 $db['default']['cache_on'] = TRUE; //在application/config.php中开启 $db['default']['cachedir'] = './cache'; //并在对应的目录中加一个可写缓存目录cache 2. 在对应的查询中开启缓存语句 /

  • mysql Key_buffer_size参数的优化设置

    先来看看document对这个参数的解释: 缓存myisam表的索引块大小,可以被所有进程所共享.当设置key_buffer_size,操作系统不会马上分配key_buffer_size设置的值,而是在需要的时候,再分配的.可以设置多个key_buffer,当设置不是默认key_buffer为0时,mysql会把缓存的索引块移到默认的key_buffer中去并删除不再使用的索引块.Myisam表中只能cache索引块,不能cache数据块. 原本描述: Index blocks for MyIS

  • MySQL优化之InnoDB优化

    学习计划很容易就被打断,坚持也不容易.最近公司里开会,要调整业务方向,建议学习NodeJS.NodeJS之前我就会一点,但是没有深入研究.Node的语法和客户端Js基本上是一样的,这半年来很少开发有客户端的东西.本来JS基础还行的我,也对这块的知识陌生了.看起来知识都是用进废退的,不常用了,过不了多久就会遗忘.所以又重新复习了JS的相关知识.学习了Node的服务器与socket知识.MySQL的计划就这样的搁浅起来,星期天的时候吃吃喝喝睡睡,早上又懒的要命,熬着熬着就熬到了下午.废话不多说了,继

  • MySQL数据库查询性能优化策略

    优化查询 使用Explain语句分析查询语句 Explain 用来分析 SELECT 查询语句,开发人员可以通过分析 Explain 结果来优化查询语句. 通过对查询语句的分析,可以了解查询语句的执行情况,找出查询语句执行的瓶颈,从而优化查询语句. 使用索引查询 MySql中提高性能的一个最有效的方式就是对数据表设计合理的索引. 索引提供了高效访问数据的方法,并且加快查询速度. 如果查询时没有使用索引,那么查询语句将扫描表中所有的记录.在数据量大的时候,这样查询速度会很慢. 使用索引进行查询,查

  • MYSQL大量写入问题优化详解

    摘要:大家提到Mysql的性能优化都是注重于优化sql以及索引来提升查询性能,大多数产品或者网站面临的更多的高并发数据读取问题.然而在大量写入数据场景该如何优化呢? 今天这里主要给大家介绍,在有大量写入的场景,进行优化的方案. 总的来说MYSQL数据库写入性能主要受限于数据库自身的配置,以及操作系统的性能,磁盘IO的性能.主要的优化手段包括以下几点: 1.调整数据库参数 (1) innodb_flush_log_at_trx_commit 默认为1,这是数据库的事务提交设置参数,可选值如下: 0

随机推荐