一文详解Python中的Map,Filter和Reduce函数

目录
  • 1. 引言
  • 2. 高阶函数
  • 3. Lambda表达式
  • 4. Map函数
  • 5. Filter函数
  • 6. Reduce函数
  • 7. 总结

1. 引言

本文重点介绍Python中的三个特殊函数Map,Filter和Reduce,以及如何使用它们进行代码编程。在开始介绍之前,我们先来理解两个简单的概念高阶函数和Lambda函数。

2. 高阶函数

把函数作为参数传入,这样的函数称为高阶函数,函数式编程就是指这种高度抽象的编程范式。

举例如下:

def higher(your_function, some_variable):
return your_function(some_variable)

实质上,函数map,filter和reduce均为高阶函数,它们的输入参数为函数和可迭代对象(list,tumple等),具体形式如下:

map(your_function, your_list)
filter(your_function, your_list)
reduce(your_function, your_list)

3. Lambda表达式

Lambda 函数类似于普通的 Python 函数,区别在于我们必须为普通函数命名,但对于 lambda 函数,它是可选的。

具体语法如下:

lambda inputs: output

接下来,让我们看一下几个普通函数及其 lambda 函数等效实现,如下:

def multiply2(x):           # is the same as
    return x * 2
multiply2 = lambda x: x*2   # lambda function

另一个例子如下:

def add(a, b): # is the same as
return a + b
add = lambda a,b: a+b # lambda function

4. Map函数

Map 用于迭代可可迭代对象中的每个元素进行相应的转换操作。 例如,通过将 ​​[1,2,3]​​ 中的每个元素乘以 2,将 ​​[1,2,3] ​​变换为 ​​[2,4,6]​​。 为此,我们需要一个lambda函数,该函数用于实现将单个元素乘2的操作,如下:

before = [1,2,3]
after = list(map(lambda x:x*2, before))
# after is [2,4,6]

此外,我们在看下个示例,主要用于将字符串所有字符转换为大写形式。

如下:

before = ["apple", "orange", "pear"]
after = list(map(lambda x:x.upper(), before))
# after is ["APPLE", "ORANGE", "PEAR"]

需要注意的是,虽然上述 lambda 函数中使用变量 x,但只要它是有效的变量名称,我们可以更换为任何我们想要取的变量名称。

5. Filter函数

过滤器用于可迭代,以仅保留满足特定条件的某些元素。例如,仅将奇数保留在 [1,2,3,4,5,6] 内并得到 [1,3,5]。在这里,我们需要一个lambda函数,它接受一个数字,如果数字是奇数,则返回True,否则返回False。

函数Filter主要功能为对于根据特定过滤条件来从可迭代对象中的选择相应的元素。举例,对于列表​​[1,2,3,4,5,6]​​,如果我们想要过滤得到其中的奇数数元素。我们可以实现一个lambda函数,当参数为奇数时为True,否则为False。

代码如下:

before = [1,2,3,4,5,6]
after = list(filter(lambda x:x%2==1, before))
# after is [1,3,5]

在举个栗子,实现只保留字符串长度大于等于5的,即将列表​​[“apple”,“orange”,“pear”]​​转换为​​[“apple”,“orange”]​​。此时我们可以实现一个lambda函数,接收一个字符串,如果该字符串的长度大于等于5,则返回True,否则为False。 代码如下:

before = ["apple", "orange", "pear"]
after = list(filter(lambda x:len(x)>=5, before))
# after is ["apple", "orange"]

6. Reduce函数

函数Reduce主要用于以某种方式来组合可迭代对象中的所有元素。 与函数​​map​​和​​filter​​不同,我们需要单独引入​​ reduce​​,如下所示:

from functools import reduce

此外,reduce中使用的lambda函数需要两个参数,它主要用于告诉我们如何将两个元素组合成起来。举个栗子,假如我们需要将列表​​[1,2,3,4,5]​​中的所有元素进行相乘得到数字​​120​​,这里我们需要实现的lambda函数就是接收两个数字,并将他们相乘。 代码示例如下:

from functools import reduce
before = [1,2,3,4,5]
after = reduce(lambda a,b: a*b, before)
# after is 120

另外一个例子,如果我们需要使用​​-​​来将字符串连接起来。具体为将列表​​["apple", "orange", "pear"]​​变成​​"apple-orange-pear"​​。这里,我们需要实现一个lambda函数,它接受2个字符串,并将它们用一个​​-​​字符相加。

代码实现如下:

from functools import reduce
before = ["apple", "orange", "pear"]
after = reduce(lambda a,b: a+"-"+b, before)

7. 总结

本文从高级函数和Lambda函数入手,先后介绍了Map,Filter和Reduce三个高级函数的用法,并给出了相应的代码示例。

到此这篇关于一文详解Python中的Map,Filter和Reduce函数的文章就介绍到这了,更多相关Python Map,Filter,Reduce内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python中三种高阶函数(map,reduce,filter)详解

    map(function,seq[,seq2]) 接收至少两个参数,基本作用为将传入的函数依次作用到序列的每个元素,并且把结果作为新的序列 返回一个可迭代的map对象 function:函数对象 py2中可为None,作用等同于zip() 如: py3中不可为None,None是不可调用.不可迭代对象 seq:可迭代对象,可以传一个或多个 # 传一个: def func(i):return i*2 print([i for i in map(func,[1,'2'])]) # [2,'22']

  • Python3中map(),reduce(),filter()的详细用法

    目录 前言 1.map() 2.filter() 3.reduce() 前言 Python3中的map().reduce().filter() 这3个一般是用于对序列进行操作的内置函数,它们经常需要与 匿名函数 lambda 联合起来使用,我们今天就来学习下. 1.map() map() 可以用于在函数中对指定序列做映射,返回值是一个迭代器,其使用语法如下: map(function, *iterables) 上面的第一个参数 function 指一个函数,第二个参数 iterable 指一个或

  • python 内置函数-range()+zip()+sorted()+map()+reduce()+filter()

    目录 range函数 zip() 函数 其它内置函数 数据类型转换相关内置函数 变量相关函数 数学相关函数 进制相关函数 高阶函数 sorted(iterable,[reverse,key]) map(func, *iterables) reduce(func,iterable) filter(func,iterable) range函数 能够生成一个指定的数字序列 使用案例: ''' range(start,stop,step) 参数: start : 开始的值 ,默认值为0 stop : 结

  • Python 函数编编程的三大法宝map+filter+reduce分享

    目录 一.map map 传入内置 Python 函数 map 高级用法 二.map 与列表推导式 三.选择可迭代对象中的元素:filter 四.合并可迭代对象中的元素: reduce 五.总结 众所周知,Python 支持多种编程范式:过程式(使用基础的语句).面向对象编程和函数式编程. Python 也提供了其他函数式编程语言的工具: 利用 map 在一个可迭代对象的各项上调用函数的工具 利用 filter 来过滤项 利用 reduce 把函数作用在成对的项上来运行结果的工具 一.map 在

  • 简单了解python filter、map、reduce的区别

    这篇文章主要介绍了简单了解python filter.map.reduce的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 python中有一些非常有趣的函数,面试的时候可能会遇到.今天也来总结一下,不过该类的网上资料也相当多,也没多少干货,只是习惯性将一些容易遗忘的功能进行整理. lambda 为关键字.filter,map,reduce为内置函数. lambda:实现python中单行最小函数. g = lambda x: x * 2

  • Python函数的返回值、匿名函数lambda、filter函数、map函数、reduce函数用法实例分析

    本文实例讲述了Python函数的返回值.匿名函数lambda.filter函数.map函数.reduce函数用法.分享给大家供大家参考,具体如下: 函数的返回值: 函数一旦执行到   return,函数就会结束,并会返回return 后面的值,如果不使用显式使用return返回,会默认返回None . return None可以简写为   return. def my_add(x,y): z=x+y return z print(my_add(1,2))##打印的是返回值 def my_add_

  • Python3中map()、reduce()、filter()的用法详解

    目录 1.map() 2.filter() 3.reduce() Python3中的map().reduce().filter() 这3个一般是用于对序列进行操作的内置函数,它们经常需要与 匿名函数 lambda 联合起来使用,我们今天就来学习下. 1.map() map() 可以用于在函数中对指定序列做映射,返回值是一个迭代器,其使用语法如下: map(function, *iterables) 上面的第一个参数 function 指一个函数,第二个参数 iterable 指一个或多个可迭代对

  • Python学习之魔法函数(filter,map,reduce)详解

    目录 filter() 函数 map() 函数 reduce() 函数 filter() 函数 小实战 今天的这一章节我们来学习一下,Python 中的三个高级函数,也被称之为 魔法函数.之所以把他们交的这么高级,主要是因为它们返回的数据类型多数是 迭代器. 我们在上一章节有介绍过,迭代器 可以提升我们的代码的执行效率.降低内存消耗.所以接下来我们就认识一下这些 魔法函数. filter() 函数 filter() 函数 是python的一个内置函数. filter() 函数的功能:可以将一个可

  • 一文详解Python中的Map,Filter和Reduce函数

    目录 1. 引言 2. 高阶函数 3. Lambda表达式 4. Map函数 5. Filter函数 6. Reduce函数 7. 总结 1. 引言 本文重点介绍Python中的三个特殊函数Map,Filter和Reduce,以及如何使用它们进行代码编程.在开始介绍之前,我们先来理解两个简单的概念高阶函数和Lambda函数. 2. 高阶函数 把函数作为参数传入,这样的函数称为高阶函数,函数式编程就是指这种高度抽象的编程范式. 举例如下: def higher(your_function, som

  • 一文详解Python中生成器的原理与使用

    目录 什么是生成器 迭代器和生成器的区别 创建方式 生成器表达式 基本语法 生成器函数 yield关键字 yield和return yield的使用方法 生成器函数的基本使用 send的使用 可迭代对象的优化 总结 我们学习完推导式之后发现,推导式就是在容器中使用一个for循环而已,为什么没有元组推导式? 原因就是“元组推导式”的名字不是这样的,而是叫做生成器表达式. 什么是生成器 生成器表达式本质上就是一个迭代器,是定义迭代器的一种方式,是允许自定义逻辑的迭代器.生成器使用generator表

  • 一文详解Python中PO模式的设计与实现

    目录 什么是PO模式 PO 三层模式 PO 设计模式的优点 将改写的脚本转为PO设计模式 构建基础的 BasePage 层 构建首页的 Page 层(HomePage) 构建登录页的 Page 层(LoginPage) 构建 首页 - 订单 - 支付 流程的 Page 层(OrderPage) PO 设计模式下测试Case的改造 在使用 Python 进行编码的时候,会使用自身自带的编码设计格式,比如说最常见的单例模式,稍微抽象一些的抽象工厂模式等等… 在利用 Python 做自动化测试的时候,

  • 一文详解Python中的重试机制

    目录 介绍 1. 最基本的重试 2. 设置停止基本条件 3. 设置何时进行重试 4. 重试后错误重新抛出 5. 设置回调函数 介绍 为了避免由于一些网络或等其他不可控因素,而引起的功能性问题.比如在发送请求时,会因为网络不稳定,往往会有请求超时的问题. 这种情况下,我们通常会在代码中加入重试的代码.重试的代码本身不难实现,但如何写得优雅.易用,是我们要考虑的问题. 这里要给大家介绍的是一个第三方库 - Tenacity (标题中的重试机制并并不准确,它不是 Python 的内置模块,因此并不能称

  • 一文详解Python中复合语句的用法

    目录 Python复合语句 1.if 语句 2.while 语句 3.for 语句 4.try 语句 5.with 语句 6.match 语句 Python复合语句 复合语句是包含其它语句(语句组)的语句:它们会以某种方式影响或控制所包含其它语句的执行.通常,复合语句会跨越多行,虽然在某些简单形式下整个复合语句也可能包含于一行之内. if.while和for语句用来实现传统的控制流程构造.try语句为一组语句指定异常处理和/和清理代码,而with语句允许在一个代码块周围执行初始化和终结化代码.函

  • 一文详解Python中实现单例模式的几种常见方式

    目录 Python 中实现单例模式的几种常见方式 元类(Metaclass): 装饰器(Decorator): 模块(Module): new 方法: Python 中实现单例模式的几种常见方式 元类(Metaclass): class SingletonType(type): """ 单例元类.用于将普通类转换为单例类. """ _instances = {} # 存储单例实例的字典 def __call__(cls, *args, **kwa

  • 一文详解Python中logging模块的用法

    目录 一.低配logging 1.v1 2.v2 3.v3 二.高配logging 1.配置日志文件 2.使用日志 三.Django日志配置文件 一.低配logging 日志总共分为以下五个级别,这个五个级别自下而上进行匹配 debug-->info-->warning-->error-->critical,默认最低级别为warning级别. 1.v1 import logging logging.debug('调试信息') logging.info('正常信息') logging

  • 图文详解Python中最神秘的一个魔法函数

    目录 前言 1.有点价值的missing() 2.神出鬼没的missing() 3.被施魔法的missing() 4.小结 五.总结 前言 一个非常神秘的魔术方法. 这个方法非常不起眼,用途狭窄,我几乎从未注意过它,然而,当发现它可能是上述"定律"的唯一例外情况时,我认为值得再写一篇文章来详细审视一下它. 本文主要关注的问题有:(1) missing()到底是何方神圣?(2) missing()有什么特别之处?擅长"大变活人"魔术? (3) missing()是否真

  • 实例详解Python中的numpy.abs和abs函数

    目录 说在最前 先看示例程序-abs()函数 再看示例程序-numpy.abs()函数 观察两个程序的结果 分析解释 拓展 补充:numpy abs()报错 总结 说在最前 不知道小伙伴们在写代码的时候有没有区分开numpy.abs和abs函数,别小看这两个函数,如果在写程序的时候正确区分使用这两个函数可以使自己的程序运行效率大大提升. 别看这两个函数都能对整数求绝对值,但他们俩的返回值类型完全不一样,如果傻傻地混为一谈,将会使你的程序运行时间被大大拖累! 今天笔者就带小伙伴们看看,这两个函数究

  • 详解Python中pyautogui库的最全使用方法

    在使用Python做脚本的话,有两个库可以使用,一个为PyUserInput库,另一个为pyautogui库.就本人而言,我更喜欢使用pyautogui库,该库功能多,使用便利.下面给大家介绍一下pyautogui库的使用方法.在cmd命令框中输入pip3 install pyautogui即可安装该库! 常用操作 我们在pyautogui库中常常使用的方法,如下: import pyautogui pyautogui.PAUSE = 1 # 调用在执行动作后暂停的秒数,只能在执行一些pyaut

随机推荐