PyTorch的Optimizer训练工具的实现

torch.optim 是一个实现了各种优化算法的库。大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法。

使用 torch.optim,必须构造一个 optimizer 对象。这个对象能保存当前的参数状态并且基于计算梯度更新参数。

例如:

optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr = 0.0001)

构造方法

Optimizer 的 __init__ 函数接收两个参数:第一个是需要被优化的参数,其形式必须是 Tensor 或者 dict;第二个是优化选项,包括学习率、衰减率等。

被优化的参数一般是 model.parameters(),当有特殊需求时可以手动写一个 dict 来作为输入。

例如:

optim.SGD([
  {'params': model.base.parameters()},
  {'params': model.classifier.parameters(), 'lr': 1e-3}
], lr=1e-2, momentum=0.9)

这样 model.base 或者说大部分的参数使用 1e-2 的学习率,而 model.classifier 的参数使用 1e-3 的学习率,并且 0.9 的 momentum 被用于所有的参数。

梯度控制

在进行反向传播之前,必须要用 zero_grad() 清空梯度。具体的方法是遍历 self.param_groups 中全部参数,根据 grad 属性做清除。

例如:

for input, target in dataset:
  def closure():
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    return loss
  optimizer.step(closure)

调整学习率

lr_scheduler 用于在训练过程中根据轮次灵活调控学习率。调整学习率的方法有很多种,但是其使用方法是大致相同的:用一个 Schedule 把原始 Optimizer 装饰上,然后再输入一些相关参数,然后用这个 Schedule 做 step()。

比如以 LambdaLR 举例:

lambda1 = lambda epoch: epoch // 30
lambda2 = lambda epoch: 0.95 ** epoch
scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])
for epoch in range(100):
 train(...)
 validate(...)
 scheduler.step()

上面用了两种优化器

优化方法

optim 库中实现的算法包括 Adadelta、Adagrad、Adam、基于离散张量的 Adam、基于 ∞ \infty∞ 范式的 Adam(Adamax)、Averaged SGD、L-BFGS、RMSProp、resilient BP、基于 Nesterov 的 SGD 算法。

以 SGD 举例:

optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
optimizer.zero_grad()
loss_fn(model(input), target).backward()
optimizer.step()

其它方法的使用也一样:

opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=0.1, betas=(0.9, 0.99)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=0.1, alpha=0.9)
...
...

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch入门之mnist分类实例

    本文实例为大家分享了Pytorch入门之mnist分类的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'denny' __time__ = '2017-9-9 9:03' import torch import torchvision from torch.autograd import Variable import torch.utils.data.dataloader as Data

  • pytorch + visdom CNN处理自建图片数据集的方法

    环境 系统:win10 cpu:i7-6700HQ gpu:gtx965m python : 3.6 pytorch :0.3 数据下载 来源自Sasank Chilamkurthy 的教程: 数据:下载链接. 下载后解压放到项目根目录: 数据集为用来分类 蚂蚁和蜜蜂.有大约120个训练图像,每个类有75个验证图像. 数据导入 可以使用 torchvision.datasets.ImageFolder(root,transforms) 模块 可以将 图片转换为 tensor. 先定义transf

  • 对PyTorch torch.stack的实例讲解

    不是concat的意思 import torch a = torch.ones([1,2]) b = torch.ones([1,2]) torch.stack([a,b],1) (0 ,.,.) = 1 1 1 1 [torch.FloatTensor of size 1x2x2] 以上这篇对PyTorch torch.stack的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python PyTorch参数初始化和Finetune

    前言 这篇文章算是论坛PyTorch Forums关于参数初始化和finetune的总结,也是我在写代码中用的算是"最佳实践"吧.最后希望大家没事多逛逛论坛,有很多高质量的回答. 参数初始化 参数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在. 所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法

  • pytorch 把MNIST数据集转换成图片和txt的方法

    本文介绍了pytorch 把MNIST数据集转换成图片和txt的方法,分享给大家,具体如下: 1.下载Mnist 数据集 import os # third-party library import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # t

  • WIn10+Anaconda环境下安装PyTorch(避坑指南)

    这些天安装 PyTorch,遇到了一些坑,特此总结一下,以免忘记.分享给大家. 首先,安装环境是:操作系统 Win10,已经预先暗转了 Anaconda. 1. 为 PyTorch 创建虚拟环境 关于 Anaconda 的安装步骤这里就忽略不讲了,Win10 下安装 Anaconda 非常简单. 安装 Anaconda 完毕后,我们在安装 PyTorch 之前最好先创建一个 pytorch 的虚拟环境.之所以创建虚拟环境是因为 Python 为不同的项目需求创建不同的虚拟环境非常常见.在实际项目

  • python PyTorch预训练示例

    前言 最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢.各种设计直接简洁,方便研究,比tensorflow的臃肿好多了.今天让我们来谈谈PyTorch的预训练,主要是自己写代码的经验以及论坛PyTorch Forums上的一些回答的总结整理. 直接加载预训练模型 如果我们使用的模型和原模型完全一样,那么我们可以直接加载别人训练好的模型: my_resnet = MyResNet(*args, **kwargs) my_resnet.load_state_dict(

  • pytorch构建网络模型的4种方法

    利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种. 假设构建一个网络模型如下: 卷积层-->Relu层-->池化层-->全连接层-->Relu层-->全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import OrderedDict 第一种方法 # Method 1 --------------------------------------

  • 详解Pytorch 使用Pytorch拟合多项式(多项式回归)

    使用Pytorch来编写神经网络具有很多优势,比起Tensorflow,我认为Pytorch更加简单,结构更加清晰. 希望通过实战几个Pytorch的例子,让大家熟悉Pytorch的使用方法,包括数据集创建,各种网络层结构的定义,以及前向传播与权重更新方式. 比如这里给出 很显然,这里我们只需要假定 这里我们只需要设置一个合适尺寸的全连接网络,根据不断迭代,求出最接近的参数即可. 但是这里需要思考一个问题,使用全连接网络结构是毫无疑问的,但是我们的输入与输出格式是什么样的呢? 只将一个x作为输入

  • 浅谈pytorch和Numpy的区别以及相互转换方法

    如下所示: # -*- coding: utf-8 -*- # @Time : 2018/1/17 16:37 # @Author : Zhiwei Zhong # @Site : # @File : Numpy_Pytorch.py # @Software: PyCharm import torch import numpy as np np_data = np.arange(6).reshape((2, 3)) # numpy 转为 pytorch格式 torch_data = torch.

  • 使用pytorch进行图像的顺序读取方法

    产生此次实验的原因:当我使用pytorch进行神经网络的训练时,需要每次向CNN传入一组图像,并且这些图片的存放位置是在两个文件夹中: A文件夹:图片1a,图片2a,图片3a--图片1000a B文件夹:图片1b, 图片2b,图片3b--图片1000b 所以在每个循环里,我都希望能从A中取出图片Na,同时从B文件夹中取出对应的图片Nb. 测试一:通过pytorch官方文档中的dataloader搭配python中的迭代器iterator dataset = dset.ImageFolder( r

  • docker挂载NVIDIA显卡运行pytorch的方法

    写在前面: 请参考之前的文章安装好CentOS.NVIDIA相关驱动及软件.docker及加速镜像. 主机运行环境 $ uname -a Linux CentOS 3.10.0-514.26.2.el7.x86_64 #1 SMP Tue Jul 4 15:04:05 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux $ cat /usr/local/cuda/version.txt CUDA Version 8.0.61 $ cat /usr/local/cuda

随机推荐