一篇文章彻底搞懂Python中可迭代(Iterable)、迭代器(Iterator)与生成器(Generator)的概念

前言

在Python中可迭代(Iterable)、迭代器(Iterator)和生成器(Generator)这几个概念是经常用到的,初学时对这几个概念也是经常混淆,现在是时候把这几个概念搞清楚了。

0x00 可迭代(Iterable)

简单的说,一个对象(在Python里面一切都是对象)只要实现了只要实现了__iter__()方法,那么用isinstance()函数检查就是Iterable对象;

例如

class IterObj:

 def __iter__(self):
  # 这里简单地返回自身
  # 但实际情况可能不会这么写
  # 而是通过内置的可迭代对象来实现
  # 下文的列子中将会展示
  return self 

上面定义了一个类IterObj并实现了__iter__()方法,这个就是一个可迭代(Iterable)对象

 it = IterObj()
 print(isinstance(it, Iterable)) # true
 print(isinstance(it, Iterator)) # false
 print(isinstance(it, Generator)) # false

记住这个类,下文我们还会看到这个类的定义。

常见的可迭代对象

在Python中有哪些常见的可迭代对象呢?

  • 集合或序列类型(如list、tuple、set、dict、str)
  • 文件对象
  • 在类中定义了__iter__()方法的对象,可以被认为是 Iterable对象,但自定义的可迭代对象要能在for循环中正确使用,就需要保证__iter__()实现必须是正确的(即可以通过内置iter()函数转成Iterator对象。关于Iterator下文还会说明,这里留下一个坑,只是记住iter()函数是能够将一个可迭代对象转成迭代器对象,然后在for中使用)
  • 在类中实现了如果只实现__getitem__()的对象可以通过iter()函数转化成迭代器但其本身不是可迭代对象。所以当一个对象能够在for循环中运行,但不一定是Iterable对象。

关于第1、2点我们可以通过以下来验证

 print(isinstance([], Iterable)) # true list 是可迭代的
 print(isinstance({}, Iterable)) # true 字典是可迭代的
 print(isinstance((), Iterable)) # true 元组是可迭代的
 print(isinstance(set(), Iterable)) # true set是可迭代的
 print(isinstance('', Iterable)) # true 字符串是可迭代的

 currPath = os.path.dirname(os.path.abspath(__file__))
 with open(currPath+'/model.py') as file:
  print(isinstance(file, Iterable)) # true

我们再来看第3点,

 print(hasattr([], "__iter__")) # true
 print(hasattr({}, "__iter__")) # true
 print(hasattr((), "__iter__")) # true
 print(hasattr('', "__iter__")) # true

这些内置集合或序列对象都有__iter__属性,即他们都实现了同名方法。但这个可迭代对象要在for循环中被使用,那么它就应该能够被内置的iter()函数调用并转化成Iterator对象。

例如,我们看内置的可迭代对象

 print(iter([])) # <list_iterator object at 0x110243f28>
 print(iter({})) # <dict_keyiterator object at 0x110234408>
 print(iter(())) # <tuple_iterator object at 0x110243f28>
 print(iter('')) # <str_iterator object at 0x110243f28>

它们都相应的转成了对应的迭代器(Iterator)对象。

现在回过头再看看一开始定义的那个IterObj类

class IterObj:

 def __iter__(self):
  return self 

it = IterObj()
print(iter(it))

我们使用了iter()函数,这时候将再控制台上打印出以下信息:

Traceback (most recent call last):
  File "/Users/mac/PycharmProjects/iterable_iterator_generator.py", line 71, in <module>
    print(iter(it))
TypeError: iter() returned non-iterator of type 'IterObj'

出现了类型错误,意思是iter()函数不能将‘非迭代器'类型转成迭代器。

那如何才能将一个可迭代(Iterable)对象转成迭代器(Iterator)对象呢?

我们修改一下IterObj类的定义

class IterObj:

 def __init__(self):
  self.a = [3, 5, 7, 11, 13, 17, 19]

 def __iter__(self):
  return iter(self.a)

我们在构造方法中定义了一个名为a的列表,然后还实现了__iter__()方法。

修改后的类是可以被iter()函数调用的,即也可以在for循环中使用

 it = IterObj()
 print(isinstance(it, Iterable)) # true
 print(isinstance(it, Iterator)) # false
 print(isinstance(it, Generator)) # false
 print(iter(it)) # <list_iterator object at 0x102007278>
 for i in it:
  print(i) # 将打印3、5、7、11、13、17、19元素

因此在定义一个可迭代对象时,我们要非常注意__iter__()方法的内部实现逻辑,一般情况下,是通过一些已知的可迭代对象(例如,上文提到的集合、序列、文件等或其他正确定义的可迭代对象)来辅助我们来实现

关于第4点说明的意思是iter()函数可以将一个实现了__getitem__()方法的对象转成迭代器对象,也可以在for循环中使用,但是如果用isinstance()方法来检测时,它不是一个可迭代对象。

class IterObj:

 def __init__(self):
  self.a = [3, 5, 7, 11, 13, 17, 19]

 def __getitem__(self, i):
  return self.a[i]

it = IterObj()
print(isinstance(it, Iterable)) # false
print(isinstance(it, Iterator)) # false
print(isinstance(it, Generator)) false
print(hasattr(it, "__iter__")) # false
print(iter(it)) # <iterator object at 0x10b231278>

for i in it:
 print(i) # 将打印出3、5、7、11、13、17、19

这个例子说明了可以在for中使用的对象,不一定是可迭代对象。

现在我们做个小结:

  • 一个可迭代的对象是实现了__iter__()方法的对象
  • 它要在for循环中使用,就必须满足iter()的调用(即调用这个函数不会出错,能够正确转成一个Iterator对象)
  • 可以通过已知的可迭代对象来辅助实现我们自定义的可迭代对象。
  • 一个对象实现了__getitem__()方法可以通过iter()函数转成Iterator,即可以在for循环中使用,但它不是一个可迭代对象(可用isinstance方法检测())

0x01 迭代器(Iterator)

上文很多地方都提到了Iterator,现在我们把这个坑填上。

当我们对可迭代的概念了解后,对于迭代器就比较好理解了。

一个对象实现了__iter__()和__next__()方法,那么它就是一个迭代器对象。 例如

class IterObj:

 def __init__(self):
  self.a = [3, 5, 7, 11, 13, 17, 19]

  self.n = len(self.a)
  self.i = 0

 def __iter__(self):
  return iter(self.a)

 def __next__(self):
  while self.i < self.n:
   v = self.a[self.i]
   self.i += 1
   return v
  else:
   self.i = 0
   raise StopIteration()

在IterObj中,构造函数中定义了一个列表a,列表长度n,索引i。

 it = IterObj()
 print(isinstance(it, Iterable)) # true
 print(isinstance(it, Iterator)) # true
 print(isinstance(it, Generator)) # false
 print(hasattr(it, "__iter__")) # true
 print(hasattr(it, "__next__")) # true

我们可以发现上文提到的

集合和序列对象是可迭代的但不是迭代器

 print(isinstance([], Iterator)) # false
 print(isinstance({}, Iterator)) # false
 print(isinstance((), Iterator)) # false
 print(isinstance(set(), Iterator)) # false
 print(isinstance('', Iterator)) # false

而文件对象是迭代器

 currPath = os.path.dirname(os.path.abspath(__file__))
 with open(currPath+'/model.py') as file:
  print(isinstance(file, Iterator)) # true

一个迭代器(Iterator)对象不仅可以在for循环中使用,还可以通过内置函数next()函数进行调用。 例如

it = IterObj()
next(it) # 3
next(it) # 5

0x02 生成器(Generator)

现在我们来看看什么是生成器?

一个生成器既是可迭代的也是迭代器

定义生成器有两种方式:

  • 列表生成器
  • 使用yield定义生成器函数

先看第1种情况

 g = (x * 2 for x in range(10)) # 0~18的偶数生成器
 print(isinstance(g, Iterable)) # true
 print(isinstance(g, Iterator)) # true
 print(isinstance(g, Generator)) # true
 print(hasattr(g, "__iter__")) # true
 print(hasattr(g, "__next__")) # true
 print(next(g)) # 0
 print(next(g)) # 2

列表生成器可以不需要消耗大量的内存来生成一个巨大的列表,只有在需要数据的时候才会进行计算。

再看第2种情况

def gen():
 for i in range(10):
  yield i 

这里yield的作用就相当于return,这个函数就是顺序地返回[0,10)的之间的自然数,可以通过next()或使用for循环来遍历。

当程序遇到yield关键字时,这个生成器函数就返回了,直到再次执行了next()函数,它就会从上次函数返回的执行点继续执行,即yield退出时保存了函数执行的位置、变量等信息,再次执行时,就从这个yield退出的地方继续往下执行。

在Python中利用生成器的这些特点可以实现协程。协程可以理解为一个轻量级的线程,它相对于线程处理高并发场景有很多优势。

看下面一个用协程实现的生产者-消费者模型

def producer(c):
 n = 0
 while n < 5:
  n += 1
  print('producer {}'.format(n))
  r = c.send(n)
  print('consumer return {}'.format(r))

def consumer():
 r = ''
 while True:
  n = yield r
  if not n:
   return
  print('consumer {} '.format(n))
  r = 'ok'

if __name__ == '__main__':
 c = consumer()
 next(c) # 启动consumer
 producer(c)

这段代码执行效果如下

producer 1
consumer 1
producer return ok
producer 2
consumer 2
producer return ok
producer 3
consumer 3
producer return ok

协程实现了CPU在两个函数之间进行切换从而实现并发的效果。

0x04 引用

docs.python.org/3.7/

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。

(0)

相关推荐

  • python的迭代器与生成器实例详解

    本文以实例详解了python的迭代器与生成器,具体如下所示: 1. 迭代器概述:   迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.   1.1 使用迭代器的优点   对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值).但对于无法随机访问的数据结构(比

  • python生成器,可迭代对象,迭代器区别和联系

    生成器,可迭代对象,迭代器之间究竟是什么关系? 用一幅图来概括: 1.生成器 定义生成器 方式一: //区别于列表生成式 gen = [x*x for x in range(5)] gen = (x*x for x in range(5)) print(gen) //Out:<generator object <genexpr> at 0x00000258DC5CD8E0> 方式二: def fib(): prev, curr = 0, 1 while True: yield cu

  • 深入讲解Python中的迭代器和生成器

    在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的,就要了解一下迭代器相关的知识了. 迭代器 迭代器对象要求支持迭代器协议的对象,在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法.其中__iter__()方法返回迭代器对象本身:next()方法返回容器的下一个元素,在结尾时引发StopIteration异常. __iter__()和next()

  • 浅谈Python中的可迭代对象、迭代器、For循环工作机制、生成器

    1.iterable iterator区别 要了解两者区别,先要了解一下迭代器协议: 迭代器协议是指:对象需要提供__next__()方法,它返回迭代中的元素,在没有更多元素后,抛出StopIteration异常,终止迭代. 可迭代对象就是:实现了迭代器协议的对象. 协议是一种约定,可迭代对象实现迭代器协议,Python的内置工具(如for循环,sum,min,max函数等)通过迭代器协议访问对象,因此,for循环并不需要知道对象具体是什么,只需要知道对象能够实现迭代器协议即可. 迭代器(ite

  • 详解Python中的内建函数,可迭代对象,迭代器

    Python中的内建函数和可迭代对象,迭代器 求值标识 id() #标识id 返回对象的唯一标识,CPython返回内存地址 hash() #哈希, 返回对象的哈希值 len(s) -->返回一个集合类型的元素个数 range(start,stop[,step]) -->返回一个从start开始到stop结束,步长为step的可迭代对象.step默认为1 类型判断 type() #返回对象的类型 isinstance(obj,class_or_tuple) ->True|False #判

  • JavaScript中的迭代器和生成器详解

    处理集合里的每一项是一个非常普通的操作,JavaScript提供了许多方法来迭代一个集合,从简单的for和for each循环到 map(),filter() 和 array comprehensions(数组推导式).在JavaScript 1.7中,迭代器和生成器在JavaScript核心语法中带来了新的迭代机制,而且还提供了定制 for-in 和 for each 循环行为的机制. 迭代器 迭代器是一个每次访问集合序列中一个元素的对象,并跟踪该序列中迭代的当前位置.在JavaScript中

  • ES6 迭代器与可迭代对象的实现

    ES6 新的数组方法.集合.for-of 循环.展开运算符(...)甚至异步编程都依赖于迭代器(Iterator )实现.本文会详解 ES6 的迭代器与生成器,并进一步挖掘可迭代对象的内部原理与使用方法 一.迭代器的原理 在编程语言中处理数组或集合时,使用循环语句必须要初始化一个变量记录迭代位置,而程序化地使用迭代器可以简化这种数据操作 如何设计一个迭代器呢? 迭代器的本身是一个对象,这个对象有 next( ) 方法返回结果对象,这个结果对象有下一个返回值 value.迭代完成布尔值 done,

  • 详解ES6语法之可迭代协议和迭代器协议

    ECMAScript 2015的几个补充,并不是新的内置或语法,而是协议.这些协议可以被任何遵循某些约定的对象来实现. 有两个协议:可迭代协议和迭代器协议. 可迭代协议 可迭代协议允许 JavaScript 对象去定义或定制它们的迭代行为, 例如(定义)在一个 for..of 结构中什么值可以被循环(得到).一些内置类型都是内置的可迭代对象并且有默认的迭代行为, 比如 Array or Map, 另一些类型则不是 (比如Object) . Iterator 接口的目的,就是为所有数据结构,提供了

  • python迭代器与生成器详解

    例子 老规矩,先上一个代码: def add(s, x): return s + x def gen(): for i in range(4): yield i base = gen() for n in [1, 10]: base = (add(i, n) for i in base) print list(base) 这个东西输出可以脑补一下, 结果是[20,21,22,23], 而不是[10, 11, 12, 13]. 当时纠结了半天,一直没搞懂,后来齐老师稍微指点了一下, 突然想明白了-

  • 一篇文章彻底搞懂Python中可迭代(Iterable)、迭代器(Iterator)与生成器(Generator)的概念

    前言 在Python中可迭代(Iterable).迭代器(Iterator)和生成器(Generator)这几个概念是经常用到的,初学时对这几个概念也是经常混淆,现在是时候把这几个概念搞清楚了. 0x00 可迭代(Iterable) 简单的说,一个对象(在Python里面一切都是对象)只要实现了只要实现了__iter__()方法,那么用isinstance()函数检查就是Iterable对象: 例如 class IterObj: def __iter__(self): # 这里简单地返回自身 #

  • 一篇文章彻底搞懂Python切片操作

    目录 引言 一.Python可切片对象的索引方式 二.Python切片操作的一般方式 三.Python切片操作详细例子 1.切取单个值 2.切取完整对象 3.start_index和end_index全为正(+)索引的情况 4.start_index和end_index全为负(-)索引的情况 5.start_index和end_index正(+)负(-)混合索引的情况 6.连续切片操作 7.切片操作的三个参数可以用表达式 8.其他对象的切片操作 四.Python常用切片操作 1.取偶数位置 2.

  • 一篇文章轻松搞懂Java中的自旋锁

    前言 锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) .这些已经写好提供的锁为我们开发提供了便利. 在之前的文章<一文彻底搞懂面试中常问的各种"锁" >中介绍了Java中的各种"锁",可能对于不是很了解这些概念的同学来说会觉得有点绕,所以我决定拆分出来,逐步详细的介绍一下这些锁的来龙去脉,那么这篇文章就先来会一会"自旋锁". 正文 出现原因 在我们的

  • 一篇文章彻底搞懂面试中常被问的各种“锁”

    前言 锁,顾名思义就是锁住一些资源,当只有我们拿到钥匙的时候,才能操作锁住的资源.在我们的Java,数据库,还有一些分布式的环境中,总是充斥着各种各样的锁让人头疼,例如"公平锁"."自旋锁"."读写锁"."分布式锁"等等. 其实真实的情况是,锁并没有那么多,很多概念只是从不同的功能特性,设计,以及锁的状态这些不同的侧重点来说明的,因此我们可以根据不同的分类来搞明白为什么会有这些"锁"?坐稳扶好了,准备开车.

  • 一篇文章彻底搞懂python正则表达式

    目录 前言 1. 正则表达式的基本概念 2. python的正则表达式re模块 3. 正则表达式语法 (1)匹配单个字符 (2)匹配多个字符 (3)边界匹配 (4)分组匹配 4. re模块相关方法使用 总结 前言 有时候字符串匹配解决不了问题,这个时候就需要正则表达式来处理.因为每一次匹配(比如找以什么开头的,以什么结尾的字符串要写好多个函数)都要单独完成,我们可以给它制定一个规则. 主要应用:爬虫的时候需要爬取各种信息,使用正则表达式可以很方便的处理需要的数据. 1. 正则表达式的基本概念 使

  • 一篇文章彻底搞懂Python类属性和方法的调用

    目录 一.类.对象概述 二.类的定义与使用 三.类属性和类方法的调用 四.私有成员与公有成员 总结 Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的. 一.类.对象概述 在面向对象程序设计中,把数据以及对数据的操作封装在一起,组成一个整体(对象),不同对象之间通过消息机制来通信或者同步.对于相同类型的对象进行分类.抽象后,得出共同的特征而形成了类. 类的抽象具体包括两个方面: 1.数据抽象:描述某类对象共有的属性或状态. 2.过程抽象:描述

  • 一篇文章彻底弄懂Python中的if __name__ == __main__

    目录 1. 引言 2. 特殊变量 3. 复杂的例子 4. 使用场景 5. 解决方案 6. 总结 1. 引言 在Python相关代码中,我们经常会遇到如下代码段: # stuff if __name__ == "__main__": # do stuff 本文将尽可能使用简单的样例来解释这里发生了什么,以及需要使用if __name__=="__main__"的情形.请注意,上述代码中name和main前后有2个下划线字符. 闲话少说,我们直接开始吧! 2. 特殊变量

  • 一篇文章彻底弄懂Python字符编码

    目录 1. 字符编码简介 1.1. ASCII 1.2. MBCS 1.3. Unicode 2. Python2.x中的编码问题 2.1. str和unicode 2.2. 字符编码声明 2.3. 读写文件 2.4. 与编码相关的方法 3.建议 3.1.字符编码声明 3.2. 抛弃str,全部使用unicode. 3.3. 使用codecs.open()替代内置的open(). 3.4. 绝对需要避免使用的字符编码:MBCS/DBCS和UTF-16. 1. 字符编码简介 1.1. ASCII

  • 一文搞懂Python中pandas透视表pivot_table功能详解

    目录 一.概述 1.1 什么是透视表? 1.2 为什么要使用pivot_table? 二.如何使用pivot_table 2.1 读取数据 2.2Index 2.3Values 2.4Aggfunc 2.5Columns 一文看懂pandas的透视表pivot_table 一.概述 1.1 什么是透视表? 透视表是一种可以对数据动态排布并且分类汇总的表格格式.或许大多数人都在Excel使用过数据透视表,也体会到它的强大功能,而在pandas中它被称作pivot_table. 1.2 为什么要使用

  • 一文搞懂Python中Pandas数据合并

    目录 1.concat() 主要参数 示例 2.merge() 参数 示例 3.append() 参数 示例 4.join() 示例 数据合并是数据处理过程中的必经环节,pandas作为数据分析的利器,提供了四种常用的数据合并方式,让我们看看如何使用这些方法吧! 1.concat() concat() 可用于两个及多个 DataFrame 间行/列方向进行内联或外联拼接操作,默认对行(沿 y 轴)取并集. 使用方式 pd.concat( objs: Union[Iterable[~FrameOr

随机推荐