Python为何不能用可变对象作为默认参数的值

先来看一道题目:

>>> def func(numbers=[], num=1):
... numbers.append(num)
... return numbers
>>> func()
[1]
>>> func()
[1, 1]
>>> func()
[1, 1, 1]

我们似乎发现了一个Bug,每次用相同的方式调用函数 func() 时,返回结果竟然不一样,而且每次返回的列表在不断地变长。

>>> id(func())
4330472840
>>> id(func())
4330472840

从上面可以看出,函数的返回值其实是同一个列表对象,因为他们的id值是一样的,只不过是列表中的元素在变化。为什么会这样呢?

这要从函数的特性说起,在 Python 中,函数是第一类对象(function is the first class object),换而言之,函数也是对象,跟整数、字符串一样可以赋值给变量、当做参数传递、还可以作为返回值。函数也有自己的属性,比如函数的名字、函数的默认参数列表。

# 函数的名字
>>> func.__name__
'func'
# 函数的默认参数列表
>>> func.__defaults__
([1, 1, 1, 1, 1], 1)

def是一条可执行语句,Python 解释器执行 def 语句时,就会在内存中就创建了一个函数对象(此时,函数里面的代码逻辑并不会执行,因为还没调用嘛),在全局命名空间,有一个函数名(变量叫 func)会指向该函数对象,记住,至始至终,不管该函数调用多少次,函数对象只有一个,就是function object,不会因为调用多次而出现多个函数对象。

函数对象生成之后,它的属性:名字和默认参数列表都将初始化完成。

初始化完成时,属性 __default__ 中的第一个默认参数 numbers 指向一个空列表。

当函数第一次被调用时,就是第一次执行 func()时,开始执行函数里面的逻辑代码(此时函数不再需要初始化了),代码逻辑就是往numbers中添加一个值为1的元素

第二次调用 func(),继续往numbers中添加一个元素

第三次、四次依此类推。

所以现在你应该明白为什么调用同一个函数,返回值确每次都不一样了吧。因为他们共享的是同一个列表(numbers)对象,只是每调用一次就往该列表中增加了一个元素

如果我们显示地指定 numbers 参数,结果截然不同。

>>> func(numbers=[10, 11])
[10, 11, 1]

因为numbers被重新赋值了,它不再指向原来初始化时的那个列表了,而是指向了我们传递过去的那个新列表对象,因此返回值变成了 [10, 11, 1]

那么我们应该如何避免前面那种情况发生呢?就是不要用可变对象作为参数的默认值。

正确方式:

>>> def func(numbers=None, num=1):
... if numbers is None:
... numbers = [num]
... else:
... numbers.append(num)
... return numbers
...
>>> func()
[1]
>>> func()
[1]
>>> func()
[1]

如果调用时没有指定参数,那么调用方法时,默认参数 numbers 每次都被重新赋值了,所以,每次调用的时候numbers都将指向一个新的对象。这就是与前者的区别所在。

那么,是不是说我们永远都不应该用可变对象来作为参数的默认值了吗?并不是,既然Python有这样的语法,就一定有他的应用场景,就像 for ... else 语法一样。我们可以用可变对象来做缓存功能。

例如:计算一个数的阶乘时可以用一个可变对象的字典当作缓存值来实现缓存,缓存中保存计算好的值,第二次调用的时候就无需重复计算,直接从缓存中拿。

def factorial(num, cache={}):
if num == 0:
return 1
if num not in cache:
print('xxx')
cache[num] = factorial(num - 1) * num
return cache[num]
print(factorial(4))
print("-------")
print(factorial(4))

输出:

---第一次调用---
xxx
xxx
xxx
xxx
24
---第二次调用---
24

第二次调用的时候,直接从 cache 中拿了值,所以,你说用可变对象作为默认值是 Python 的缺陷吗?也并不是,对吧!你还是当作一种特性来使用。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 浅谈Python中的可变对象和不可变对象

    什么是可变/不可变对象 不可变对象,该对象所指向的内存中的值不能被改变.当改变某个变量时候,由于其所指的值不能被改变,相当于把原来的值复制一份后再改变,这会开辟一个新的地址,变量再指向这个新的地址. 可变对象,该对象所指向的内存中的值可以被改变.变量(准确的说是引用)改变后,实际上是其所指的值直接发生改变,并没有发生复制行为,也没有开辟新的出地址,通俗点说就是原地改变. Python中,数值类型(int和float).字符串str.元组tuple都是不可变类型.而列表list.字典dict.集合

  • 对python3 中方法各种参数和返回值详解

    如下所示: # -*- coding:utf-8 -*- # Author: Evan Mi # 函数 def func1(): print('in the func1') return 0 # 过程 def func2(): print('in the func2') """ 多个值用逗号分割后返回,会分装到一个tuple中返回, 接收的时候,如果使用一个变量接收,那么这个接收变量就是一个tuple类型的 如果接收的时候也用逗号分割多个值来接收,那么可以分别对应返回tupl

  • 深入理解python中函数传递参数是值传递还是引用传递

    目前网络上大部分博客的结论都是这样的: Python不允许程序员选择采用传值还是传 引用.Python参数传递采用的肯定是"传对象引用"的方式.实际上,这种方式相当于传值和传引用的一种综合.如果函数收到的是一个可变对象(比如字典 或者列表)的引用,就能修改对象的原始值--相当于通过"传引用"来传递对象.如果函数收到的是一个不可变对象(比如数字.字符或者元组)的引用,就不能 直接修改原始对象--相当于通过"传值"来传递对象. 你可以在很多讨论该问题

  • 深入讨论Python函数的参数的默认值所引发的问题的原因

    本文将介绍使用mutable对象作为Python函数参数默认值潜在的危害,以及其实现原理和设计目的 陷阱重现 我们就用实际的举例来演示我们今天所要讨论的主要内容. 下面一段代码定义了一个名为 generate_new_list_with 的函数.该函数的本意是在每次调用时都新建一个包含有给定 element 值的list.而实际运行结果如下: Python 2.7.9 (default, Dec 19 2014, 06:05:48) [GCC 4.2.1 Compatible Apple LLV

  • python3 http提交json参数并获取返回值的方法

    如下所示: import json import http.client connection = http.client.HTTPSConnection('spd.aiopos.cn') headers = {'Content-type': 'application/json'} values = { 'acct_pan':'6226011****83678', 'acct_name':'张三', 'cert_type':'01', 'cert_id':'37293019****95', 'p

  • 基于Python对象引用、可变性和垃圾回收详解

    变量不是盒子 在示例所示的交互式控制台中,无法使用"变量是盒子"做解释.图说明了在 Python 中为什么不能使用盒子比喻,而便利贴则指出了变量的正确工作方式. 变量 a 和 b 引用同一个列表,而不是那个列表的副本 >>> a = [1, 2, 3] >>> b = a >>> a.append(4) >>> b [1, 2, 3, 4] 如果把变量想象为盒子,那么无法解释 Python 中的赋值:应该把变量视作

  • Python为何不能用可变对象作为默认参数的值

    先来看一道题目: >>> def func(numbers=[], num=1): ... numbers.append(num) ... return numbers >>> func() [1] >>> func() [1, 1] >>> func() [1, 1, 1] 我们似乎发现了一个Bug,每次用相同的方式调用函数 func() 时,返回结果竟然不一样,而且每次返回的列表在不断地变长. >>> id(fu

  • Python中的函数参数(位置参数、默认参数、可变参数)

    目录 一.位置参数 二.默认参数 三.可变参数 四.关键字参数 五.命名关键字参数 六.各种参数之间的组合 函数的参数:Python中函数定义非常简单,由于函数参数的存在,使函数变得非常灵活应用广泛:不但使得函数能够处理复杂多变的参数,还能简化函数的调用. Python中的函数参数有如下几种:位置参数.默认参数.可变参数.关键字参数和命名关键字参数 一.位置参数 位置参数(positional arguments)就是其他语言的参数,其他语言没有分参数的种类是因为只有这一种参数, 所有参数都遵循

  • 详细分析Python可变对象和不可变对象

    在 Python 中一切都可以看作为对象.每个对象都有各自的 id, type 和 value. id: 当一个对象被创建后,它的 id 就不会在改变,这里的 id 其实就是对象在内存中的地址,可以使用 id() 去查看对象在内存中地址. type: 和 id 一样当对象呗创建之后,它的 type 也不能再被改变,type 决定了该对象所能够支持的操作 value: 对象的值 一个对象可变与否就在于 value 值是否支持改变. 不可变对象 常见的不可变对象(immutable objects)

  • python可变对象,不可变对象详解

    在写python程序时,对于可变对象和不可变对象这里理解不深,导致总会犯一些细节错误.以下面的程序举例: ab = {'a':1, 'b':2} list1 = [] for i in range(2,5): ab['a'] = i list1.append(ab) print(list1) # [{'a': 4, 'b': 2}, {'a': 4, 'b': 2}, {'a': 4, 'b': 2}] 这段代码本以为结果应该是[{'a': 2, 'b': 2}, {'a': 3, 'b': 2

  • python函数的默认参数请勿定义可变类型详解

    目录 函数的默认参数请勿定义可变类型 可变类型和不可变类型 定义可变类型会有什么问题? 导致的原因 解决方法 关于可变类型作为默认参数时的注意点 测试:将可变类型列表换为字典 测试:来个不可变类型字符串 测试:元祖包个列表来 小结一下 函数的默认参数请勿定义可变类型 经常会看到这样一句代码警告: Default argument value is mutable 意思是告诉我们函数的定义中,使用可变类型做默认参数. 那为什么会有这个警告呢? 可变类型和不可变类型 可变类型(mutable):列表

  • 深入讲解Python函数中参数的使用及默认参数的陷阱

    C++里函数可以设置缺省参数,Java不可以,只能通过重载的方式来实现,python里也可以设置默认参数,最大的好处就是降低函数难度,函数的定义只有一个,并且python是动态语言,在同一名称空间里不能有想多名称的函数,如果出现了,那么后出现的会覆盖前面的函数. def power(x, n=2): s = 1 while n > 0: n = n - 1 s = s * x return s 看看结果: >>> power(5) 25 >>> power(5,3

  • Python中的默认参数详解

    文章的主题 不要使用可变对象作为函数的默认参数例如 list,dict,因为def是一个可执行语句,只有def执行的时候才会计算默认默认参数的值,所以使用默认参数会造成函数执行的时候一直在使用同一个对象,引起bug. 基本原理 在 Python 源码中,我们使用def来定义函数或者方法.在其他语言中,类似的东西往往只是一一个语法声明关键字,但def却是一个可执行的指令.Python代码执行的时候先会使用 compile 将其编译成 PyCodeObject. PyCodeObject 本质上依然

  • 详细介绍Python函数中的默认参数

    import datetime as dt def log_time(message, time=None): if time is None: time=dt.datetime.now() print("{0}: {1}".format(time.isoformat(), message)) 最近我在一段Python代码中发现了一个因为错误的使用默认参数而产生的非常恶心的bug.如果您已经知道关于默认参数的全部内容了,只是想嘲笑一下我这可笑的错误,请直接跳到本文末尾.哎,这段代码是我

  • Python进阶-函数默认参数(详解)

    一.默认参数 python为了简化函数的调用,提供了默认参数机制: def pow(x, n = 2): r = 1 while n > 0: r *= x n -= 1 return r 这样在调用pow函数时,就可以省略最后一个参数不写: print(pow(5)) # output: 25 在定义有默认参数的函数时,需要注意以下: 必选参数必须在前面,默认参数在后: 设置何种参数为默认参数?一般来说,将参数值变化小的设置为默认参数. python标准库实践 python内建函数: prin

  • python变量赋值方法(可变与不可变)

    python中不存在所谓的传值调用,一切传递的都是对象的引用,也可以认为是传址. 一.可变对象和不可变对象 Python在heap中分配的对象分成两类:可变对象和不可变对象.所谓可变对象是指,对象的内容可变,而不可变对象是指对象内容不可变. 不可变(immutable):int.字符串(string).float.(数值型number).元组(tuple) 可变(mutable):字典型(dictionary).列表型(list) 不可变类型特点: 看下面的例子(例1) i = 73 i +=

随机推荐