Python数据结构与算法(几种排序)小结

Python数据结构与算法(几种排序)

数据结构与算法(Python)

冒泡排序

冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

冒泡排序算法的运作如下:

  1. 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

冒泡排序的分析

交换过程图示(第一次):

那么我们需要进行n-1次冒泡过程,每次对应的比较次数如下图所示:

def bubble_sort(alist):
 for j in range(len(alist)-1,0,-1):
  # j表示每次遍历需要比较的次数,是逐渐减小的
  for i in range(j):
   if alist[i] > alist[i+1]:
    alist[i], alist[i+1] = alist[i+1], alist[i]
li = [54,26,93,17,77,31,44,55,20]
bubble_sort(li)
print(li)

时间复杂度

  • 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

冒泡排序的演示

效果:

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。

选择排序分析

排序过程:

红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

def selection_sort(alist):
 n = len(alist)
 # 需要进行n-1次选择操作
 for i in range(n-1):
  # 记录最小位置
  min_index = i
  # 从i+1位置到末尾选择出最小数据
  for j in range(i+1, n):
   if alist[j] < alist[min_index]:
    min_index = j
  # 如果选择出的数据不在正确位置,进行交换
  if min_index != i:
   alist[i], alist[min_index] = alist[min_index], alist[i]
alist = [54,226,93,17,77,31,44,55,20]
selection_sort(alist)
print(alist)

时间复杂度

  1. 最优时间复杂度:O(n2)
  2. 最坏时间复杂度:O(n2)
  3. 稳定性:不稳定(考虑升序每次选择最大的情况)

选择排序演示 

插入排序

插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

插入排序分析

def insert_sort(alist):
 # 从第二个位置,即下标为1的元素开始向前插入
 for i in range(1, len(alist)):
  # 从第i个元素开始向前比较,如果小于前一个元素,交换位置
  for j in range(i, 0, -1):
   if alist[j] < alist[j-1]:
    alist[j], alist[j-1] = alist[j-1], alist[j]
alist = [54,26,93,17,77,31,44,55,20]
insert_sort(alist)
print(alist)

时间复杂度

  1. 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
  2. 最坏时间复杂度:O(n2)
  3. 稳定性:稳定

插入排序演示

快速排序

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤为:

从数列中挑出一个元素,称为"基准"(pivot),
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

快速排序的分析

def quick_sort(alist, start, end):
  """快速排序"""
  # 递归的退出条件
  if start >= end:
    return
  # 设定起始元素为要寻找位置的基准元素
  mid = alist[start]
  # low为序列左边的由左向右移动的游标
  low = start
  # high为序列右边的由右向左移动的游标
  high = end
  while low < high:
    # 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动
    while low < high and alist[high] >= mid:
      high -= 1
    # 将high指向的元素放到low的位置上
    alist[low] = alist[high]
    # 如果low与high未重合,low指向的元素比基准元素小,则low向右移动
    while low < high and alist[low] < mid:
      low += 1
    # 将low指向的元素放到high的位置上
    alist[high] = alist[low]
  # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置
  # 将基准元素放到该位置
  alist[low] = mid
  # 对基准元素左边的子序列进行快速排序
  quick_sort(alist, start, low-1)
  # 对基准元素右边的子序列进行快速排序
  quick_sort(alist, low+1, end)
alist = [54,26,93,17,77,31,44,55,20]
quick_sort(alist,0,len(alist)-1)
print(alist)

时间复杂度

  1. 最优时间复杂度:O(nlogn)
  2. 最坏时间复杂度:O(n2)
  3. 稳定性:不稳定

从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。

快速排序演示

希尔排序

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

希尔排序过程

希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。

例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):

13 14 94 33 82

25 59 94 65 23

45 27 73 25 39

10

然后我们对每列进行排序:

10 14 73 25 23

13 27 94 33 39

25 59 94 65 82

45

将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:

10 14 73

25 23 13

27 94 33

39 25 59

94 65 82

45

排序之后变为:

10 14 13

25 23 33

27 25 59

39 65 73

45 94 82

94

最后以1步长进行排序(此时就是简单的插入排序了)

希尔排序的分析 

def shell_sort(alist):
  n = len(alist)
  # 初始步长
  gap = n / 2
  while gap > 0:
    # 按步长进行插入排序
    for i in range(gap, n):
      j = i
      # 插入排序
      while j>=gap and alist[j-gap] > alist[j]:
        alist[j-gap], alist[j] = alist[j], alist[j-gap]
        j -= gap
    # 得到新的步长
    gap = gap / 2
alist = [54,26,93,17,77,31,44,55,20]
shell_sort(alist)
print(alist)

 时间复杂度

最优时间复杂度:根据步长序列的不同而不同
最坏时间复杂度:O(n2)
稳定想:不稳定
希尔排序演示

归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。

归并排序的分析

def merge_sort(alist):
  if len(alist) <= 1:
    return alist
  # 二分分解
  num = len(alist)/2
  left = merge_sort(alist[:num])
  right = merge_sort(alist[num:])
  # 合并
  return merge(left,right)
def merge(left, right):
  '''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组'''
  #left与right的下标指针
  l, r = 0, 0
  result = []
  while l<len(left) and r<len(right):
    if left[l] < right[r]:
      result.append(left[l])
      l += 1
    else:
      result.append(right[r])
      r += 1
  result += left[l:]
  result += right[r:]
  return result
alist = [54,26,93,17,77,31,44,55,20]
sorted_alist = mergeSort(alist)
print(sorted_alist)

 时间复杂度

  1. 最优时间复杂度:O(nlogn)
  2. 最坏时间复杂度:O(nlogn)
  3. 稳定性:稳定

常见排序算法效率比较

搜索

搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找

二分法查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

 二分法查找实现

(非递归实现)

def binary_search(alist, item):
   first = 0
   last = len(alist)-1
   while first<=last:
     midpoint = (first + last)/2
     if alist[midpoint] == item:
       return True
     elif item < alist[midpoint]:
       last = midpoint-1
     else:
       first = midpoint+1
  return False
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))
(递归实现)
def binary_search(alist, item):
  if len(alist) == 0:
    return False
  else:
    midpoint = len(alist)//2
    if alist[midpoint]==item:
     return True
    else:
     if item<alist[midpoint]:
      return binary_search(alist[:midpoint],item)
     else:
      return binary_search(alist[midpoint+1:],item)
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

时间复杂度

  1. 最优时间复杂度:O(1)
  2. 最坏时间复杂度:O(logn)

总结

以上所述是小编给大家介绍的Python数据结构与算法(几种排序)小结,希望对大家有帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

(0)

相关推荐

  • Python数据结构与算法之链表定义与用法实例详解【单链表、循环链表】

    本文实例讲述了Python数据结构与算法之链表定义与用法.分享给大家供大家参考,具体如下: 本文将为大家讲解: (1)从链表节点的定义开始,以类的方式,面向对象的思想进行链表的设计 (2)链表类插入和删除等成员函数实现时需要考虑的边界条件, prepend(头部插入).pop(头部删除).append(尾部插入).pop_last(尾部删除) 2.1 插入: 空链表 链表长度为1 插入到末尾 2.2 删除 空链表 链表长度为1 删除末尾元素 (3)从单链表到单链表的一众变体: 带尾节点的单链表

  • Python数据结构与算法之二叉树结构定义与遍历方法详解

    本文实例讲述了Python数据结构与算法之二叉树结构定义与遍历方法.分享给大家供大家参考,具体如下: 先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置 层序遍历  采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 # 先序遍历 # 访问结点,遍历左子树,如果左子树为空,则遍历右子树, # 如果右子树为空,则向上走到一个可以向右走的结点,继续该过程 preorder(t): if t: print t.value preorde

  • Python数据结构与算法之图结构(Graph)实例分析

    本文实例讲述了Python数据结构与算法之图结构(Graph).分享给大家供大家参考,具体如下: 图结构(Graph)--算法学中最强大的框架之一.树结构只是图的一种特殊情况. 如果我们可将自己的工作诠释成一个图问题的话,那么该问题至少已经接近解决方案了.而我们我们的问题实例可以用树结构(tree)来诠释,那么我们基本上已经拥有了一个真正有效的解决方案了. 邻接表及加权邻接字典 对于图结构的实现来说,最直观的方式之一就是使用邻接列表.基本上就是针对每个节点设置一个邻接列表.下面我们来实现一个最简

  • Python数据结构与算法之列表(链表,linked list)简单实现

    Python 中的 list 并不是我们传统(计算机科学)意义上的列表,这也是其 append 操作会比 insert 操作效率高的原因.传统列表--通常也叫作链表(linked list)--通常是由一系列节点(node)来实现的,其每一个节点(尾节点除外)都持有一个指向下一个节点的引用. 其简单实现: class Node: def __init__(value, next=None): self.value = value self.next = next 接下来,我们就可使用链表的结构来

  • Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个点到其他各顶点的路径--单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, 3:{3:0, 5:5}, 4:{3:4, 4:0, 5:13, 6:15}, 5:{5:0, 6:4}, 6:{6:0}} # 每次找到离源点最近的一个顶

  • Python数据结构与算法之图的基本实现及迭代器实例详解

    本文实例讲述了Python数据结构与算法之图的基本实现及迭代器.分享给大家供大家参考,具体如下: 这篇文章参考自<复杂性思考>一书的第二章,并给出这一章节里我的习题解答. (这书不到120页纸,要卖50块!!,一开始以为很厚的样子,拿回来一看,尼玛.....代码很少,给点提示,然后让读者自己思考怎么实现) 先定义顶点和边 class Vertex(object): def __init__(self, label=''): self.label = label def __repr__(sel

  • java 算法 6种排序小结

    目录 冒泡排序 选择排序 插入排序 希尔排序 归并排序 快速排序 冒泡排序 package 冒泡排序; import java.util.Arrays; public class Bubble { /** * 对数组a中的元素进行排序 * @param a */ public static int[] sort(int[] a){ for (int i=a.length-1;i>0;i--){ for (int j=0;j<i;j++){ if(greater(a[j],a[j+1])){ e

  • Python数据结构与算法(几种排序)小结

    Python数据结构与算法(几种排序) 数据结构与算法(Python) 冒泡排序 冒泡排序(英语:Bubble Sort)是一种简单的排序算法.它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端. 冒泡排序算法的运作如下: 比较相邻的元素.如果第一个比第二个大(升序),就交换他们两个. 对每一对相邻元素作同样的工作,从

  • Python数据结构与算法之常见的分配排序法示例【桶排序与基数排序】

    本文实例讲述了Python数据结构与算法之常见的分配排序法.分享给大家供大家参考,具体如下: 箱排序(桶排序) 箱排序是根据关键字的取值范围1~m,预先建立m个箱子,箱排序要求关键字类型为有限类型,可能会有无限个箱子,实用价值不大,一般用于基数排序的中间过程. 桶排序是箱排序的实用化变种,其对数据集的范围,如[0,1) 进行划分为n个大小相同的子区间,每一个子区间为一个桶,然后将n非记录分配到各桶中.因为关键字序列是均匀分布在[0,1)上的,所以一般不会有很多记录落入同一个桶中. 以下的桶排序方

  • Python 数据结构之十大经典排序算法一文通关

    目录 1.冒泡排序 算法演示 算法步骤 算法实现 2.选择排序 算法演示 算法步骤 算法实现 3.简单插入排序 算法演示 算法步骤 算法实现 4.希尔排序 算法演示 算法步骤 算法实现 5.归并排序 算法演示 算法步骤 算法实现 6.快速排序 算法演示 算法步骤 算法实现 7.堆排序 算法演示 算法步骤 算法实现 8.计数排序 算法演示 算法步骤 算法实现 9.桶排序 算法演示 算法步骤 算法实现 10.基数排序 算法演示 算法步骤 算法实现 一文搞掂十大经典排序算法 今天整理一下十大经典排序算

  • Python数据结构与算法之跳表详解

    目录 0. 学习目标 1. 跳表的基本概念 1.1 跳表介绍 1.2 跳表的性能 1.3 跳表与普通链表的异同 2. 跳表的实现 2.1 跳表结点类 2.2 跳表的初始化 2.3 获取跳表长度 2.4 读取指定位置元素 2.5 查找指定元素 2.6 在跳表中插入新元素 2.7 删除跳表中指定元素 2.8 其它一些有用的操作 3. 跳表应用 3.1 跳表应用示例 0. 学习目标 在诸如单链表.双线链表等普通链表中,查找.插入和删除操作由于必须从头结点遍历链表才能找到相关链表,因此时间复杂度均为O(

  • java数据结构与算法之希尔排序详解

    本文实例讲述了java数据结构与算法之希尔排序.分享给大家供大家参考,具体如下: 这里要介绍的是希尔排序(缩小增量排序法). 希尔排序:通过比较相距一定间隔的元素来工作:各趟比较所用的距离(增量)随着算法的进行而减小,直到只比较相邻元素的最后一趟排序为止.是插入排序的一种,是针对直接插入排序算法的改进. 算法思想:先将要排序的序列按某个增量d分成若干个子序列,对每个子序列中全部元素分别进行直接插入排序,然后再用一个较小的增量对它进行分组,在每组中再进行排序.当增量减到1时,整个要排序的数被分成一

  • java数据结构与算法之桶排序实现方法详解

    本文实例讲述了java数据结构与算法之桶排序实现方法.分享给大家供大家参考,具体如下: 基本思想: 假定输入是由一个随机过程产生的[0, M)区间上均匀分布的实数.将区间[0, M)划分为n个大小相等的子区间(桶),将n个输入元素分配到这些桶中,对桶中元素进行排序,然后依次连接桶输入0 ≤A[1..n] <M辅助数组B[0..n-1]是一指针数组,指向桶(链表).将n个记录分布到各个桶中去.如果有多于一个记录分到同一个桶中,需要进行桶内排序.最后依次把各个桶中的记录列出来记得到有序序列. [桶-

  • Python数据结构与算法之完全树与最小堆实例

    本文实例讲述了Python数据结构与算法之完全树与最小堆.分享给大家供大家参考,具体如下: # 完全树 最小堆 class CompleteTree(list): def siftdown(self,i): """ 对一颗完全树进行向下调整,传入需要向下调整的节点编号i 当删除了最小的元素后,当新增加一个数被放置到堆顶时, 如果此时不符合最小堆的特性,则需要将这个数向下调整,直到找到合适的位置为止""" n = len(self) # 当 i 节

  • Python数据结构与算法之使用队列解决小猫钓鱼问题

    本文实例讲述了Python数据结构与算法之使用队列解决小猫钓鱼问题.分享给大家供大家参考,具体如下: 按照<啊哈>里的思路实现这道题目,但是和结果不一样,我自己用一幅牌试了一下,发现是我的结果像一点,可能我理解的有偏差. # 小猫钓鱼 # 计算桌上每种牌的数量 # 使用defaultdict类,并设置默认类型为int型,即默认值为0 # cardcounts = defaultdict(int) # 不过deque有对应的方法 def henhenhaahaa(): from collecti

随机推荐