基于Python实现迪杰斯特拉和弗洛伊德算法

图搜索之基于Python的迪杰斯特拉算法和弗洛伊德算法,供大家参考,具体内容如下

Djstela算法

#encoding=UTF-8
MAX=9
'''
Created on 2016年9月28日
@author: sx
'''
b=999
G=[[0,1,5,b,b,b,b,b,b],\
 [1,0,3,7,5,b,b,b,b],\
 [5,3,0,b,1,7,b,b,b],\
 [b,7,b,0,2,b,3,b,b],\
 [b,5,1,2,0,3,6,9,b],\
 [b,b,7,b,3,0,b,5,b],\
 [b,b,b,3,6,b,0,2,7],\
 [b,b,b,b,9,5,2,0,4],\
 [b,b,b,b,b,b,7,4,0]]
P=[]
D=[]
def Djstela(G,P,D):
 final=[]
 for i in range(0,len(G)):
  final.append(0)
  D.append(G[0][i])
  P.append(0)
 D[0]=0
 final[0]=1
 k=0
 for v in range(1,len(G)):
  min=999
  for w in range(0,len(G)):
   if final[w]==0 and D[w]<min:
    k=w
    min=D[w]
  final[k]=1
  for t in range(0,len(G)):
   if min+G[k][t]<D[t]:
    D[t]=min+G[k][t]
    P[t]=k
 print("\n最短路径\n",D,"\n","\n前一个选择\n",P)
def search(x):
 print("选择的终点",x,"最短路径",D[x])
print("邻接矩阵\n")
for i in range(0,9):
 print(G[i])
Djstela(G, P, D)
q=input("\n请输入终点")
search(int(q))

FLOYD算法

#encoding=UTF-8
'''
Created on 2016年9月28日
@author: sx
'''
t=0
b=999
G=[[0,1,5,b,b,b,b,b,b],\
 [1,0,3,7,5,b,b,b,b],\
 [5,3,0,b,1,7,b,b,b],\
 [b,7,b,0,2,b,3,b,b],\
 [b,5,1,2,0,3,6,9,b],\
 [b,b,7,b,3,0,b,5,b],\
 [b,b,b,3,6,b,0,2,7],\
 [b,b,b,b,9,5,2,0,4],\
 [b,b,b,b,b,b,7,4,0]]
P=[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],\
 [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],\
 [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]
D=[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],\
 [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],\
 [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]
def Floyd(G,P,D):
 t=0
 for u in range(0,len(G)):
  for s in range(0,len(G)):
   D[u][s]=G[u][s]
   P[u][s]=s
 for k in range(0,len(G)):
  for v in range(0,len(G)):
   for w in range(0,len(G)):
    if D[v][w]>D[v][k]+D[k][w]:
     t=t+1
     D[v][w]=D[v][k]+D[k][w]
     P[v][w]=P[v][k]
Floyd(G, P, D)
def search(s,u):
 lenth=D[s][u]
 print("路径长度为",lenth)
 f=P[s][u]
 foot=[s,f]
 if f==u:
  print("无需规划,0步")
 while f!=u:
  f=P[f][u]
  foot.append(f)
 for i in range(0,len(foot)):
  if i==0:
   print("起  点____",foot[i])
  elif i==len(foot)-1:
   print("终  点____",foot[i],"步长___",G[foot[i-1]][foot[i]])
  else:
   print("第",i,"点____",foot[i],"步长___",G[foot[i-1]][foot[i]])
print("邻接矩阵")
for i in range(0,9):
 print(G[i])
s=input("请输入起点0-8\n")
u=input("请输入终点0-8\n")
Floyd(G, P, D)
search(int(s),int(u))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现Dijkstra算法

    Dijkstra算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 迪杰斯特拉算法是求从某一个起点到其余所有结点的最短路径,是一对多的映射关系,是一种贪婪算法 示例: 算法 算法实现流程思路: 迪杰斯特拉算法每次只找离起点最近的一个结点,并将之并入已经访问过结点的集合(以防重复访问,陷入死循环),然后将刚找到的

  • Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个点到其他各顶点的路径--单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, 3:{3:0, 5:5}, 4:{3:4, 4:0, 5:13, 6:15}, 5:{5:0, 6:4}, 6:{6:0}} # 每次找到离源点最近的一个顶

  • python实现dijkstra最短路由算法

    Dijkstra算法:又称迪杰斯特拉算法,迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止百度百科. 注意:Dijkstra算法不能处理包含负边的图 # dijkstra算法实现,有向图和路由的源点作为函数的输入,最短路径最为输出 def dijkstra(graph,src): # 判断图是否为空,如果为空直接退出

  • python实现Floyd算法

    下面是用Python实现Floyd算法的代码,供大家参考,具体内容如下 # -*- coding: utf-8 -*- """ Created on Thu Jul 13 14:56:37 2017 @author: linzr """ ## 表示无穷大 INF_val = 9999 class Floyd_Path(): def __init__(self, node, node_map, path_map): self.node = node

  • Python基于Floyd算法求解最短路径距离问题实例详解

    本文实例讲述了Python基于Floyd算法求解最短路径距离问题.分享给大家供大家参考,具体如下: Floyd算法和Dijkstra算法,相信大家都不陌生,在最短路径距离的求解中应该算得上是最为基础和经典的两个算法了,今天就用一点时间来重新实现一下,因为本科的时候学习数据结构才开始接触的这个算法,当时唯一会用的就是C语言了,现在的话,C语言几乎已经离我远去了,个人感觉入手机器学习以来python更得我心,因为太通俗易懂了,带给你的体验自然也是非常不错的. 当然网上 有很多的算法讲解教程,我不会在

  • python实现Dijkstra静态寻路算法

    算法介绍 迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算法或者作为其他图算法的一个子模块. 当然目前也有人将它用来处理物流方面,以获取代价最小的运送方案. 算法思路 Dijkstra算法采用的是一种贪心的策略. 1.首先,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合T. 2.其次,原点 s 的路径权重被赋为 0 (dis[s] = 0).若对于顶点 s 存在能直接到达的边(s,m

  • Python使用Dijkstra算法实现求解图中最短路径距离问题详解

    本文实例讲述了Python使用Dijkstra算法实现求解图中最短路径距离问题.分享给大家供大家参考,具体如下: 这里继续前面一篇<Python基于Floyd算法求解最短路径距离问题>的内容,这里要做的是Dijkstra算法,与Floyd算法类似,二者的用途均为求解最短路径距离,在图中有着广泛的应用,二者的原理都是老生常谈了,毕竟本科学习数据结构的同学是不可能不学习这两个算法的,所以在这里我也不再累赘,只简单概述一下这个算法的核心思想: Dijkstra算法的输入有两个参数,一个是原始的数据矩

  • 基于Python实现迪杰斯特拉和弗洛伊德算法

    图搜索之基于Python的迪杰斯特拉算法和弗洛伊德算法,供大家参考,具体内容如下 Djstela算法 #encoding=UTF-8 MAX=9 ''' Created on 2016年9月28日 @author: sx ''' b=999 G=[[0,1,5,b,b,b,b,b,b],\ [1,0,3,7,5,b,b,b,b],\ [5,3,0,b,1,7,b,b,b],\ [b,7,b,0,2,b,3,b,b],\ [b,5,1,2,0,3,6,9,b],\ [b,b,7,b,3,0,b,5

  • Python实现迪杰斯特拉算法并生成最短路径的示例代码

    def Dijkstra(network,s,d):#迪杰斯特拉算法算s-d的最短路径,并返回该路径和代价 print("Start Dijstra Path--") path=[]#s-d的最短路径 n=len(network)#邻接矩阵维度,即节点个数 fmax=999 w=[[0 for i in range(n)]for j in range(n)]#邻接矩阵转化成维度矩阵,即0→max book=[0 for i in range(n)]#是否已经是最小的标记列表 dis=[

  • Python实现迪杰斯特拉算法过程解析

    一. 迪杰斯特拉算法思想 Dijkstra算法主要针对的是有向图的单元最短路径问题,且不能出现权值为负的情况!Dijkstra算法类似于贪心算法,其应用根本在于最短路径的最优子结构性质. 最短路径的最优子结构性质: 如果P(i,j)={Vi-Vk-Vs-Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径. 证明: 假设P(i,j)={Vi-Vk-Vs-Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)

  • C/C++最短路径算法之迪杰斯特拉Dijkstra的实现详解

    目录 前言 一.迪杰斯特拉(Dijkstra)算法是什么 二.实现步骤 1.算法思路 2.进入主函数ShortestPath() 1.创建final数组并且初始化path[].dist[]数组 2.对于节点的初始化 3.进入主循环 三.全部代码(邻接表下) 四.全部代码(邻接矩阵下) 五.测试代码(邻接表下) 总结 前言 我们在生活中常常面临对路径选择的决策问题,这就要用到最短路径的算法了. 对于我这种榆木脑袋,显然迪杰斯特拉的这种算法有点高深.主要是我笨. 对于网图来说,最短路径,就是指两个顶

  • java图论弗洛伊德和迪杰斯特拉算法解决最短路径问题

    目录 弗洛伊德算法 算法介绍 算法图解分析   迪杰斯特拉算法 算法介绍 算法过程  弗洛伊德算法 算法介绍 算法图解分析     第一轮循环中,以A(下标为:0)作为中间顶点 [即把作为中间顶点的所有情况都进行遍历,就会得到更新距离表和前驱关系],距离表和前驱关系更新为: 弗洛伊德算法和迪杰斯特拉算法的最大区别是: 弗洛伊德算法是从各个顶点出发,求最短路径: 迪杰斯特拉算法是从某个顶点开始,求最短路径. /** * 弗洛伊德算法 * 容易理解,容易实现 */ public void floyd

  • C++用Dijkstra(迪杰斯特拉)算法求最短路径

    算法介绍 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低. 算法思想 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增

  • Java 迪杰斯特拉算法实现查找最短距离的实现

    迪杰斯特拉算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.具体的计算规则我们可以通过下图进行查看. 通过这幅图我们可以简单的理解迪杰斯特拉算法算法的基础思路,下面我们就通过JAVA来实现这个算法. 算法实现 在迪杰斯特拉算法中我们需要保存从起点开始到每一个节点最短步长,这也是图中需要比较得出的步长,同时我们还

  • js图数据结构处理 迪杰斯特拉算法代码实例

    这篇文章主要介绍了js图数据结构处理 迪杰斯特拉算法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 /*//1.确定数据结构, mapf[i][j] 为点i到点j的距离 [ Infinity 2 5 Infinity Infinity Infinity Infinity 2 6 Infinity Infinity Infinity Infinity 7 1 Infinity Infinity 2 Infinity 4 Infinity

  • C++实现Dijkstra(迪杰斯特拉)算法

    Dijkstra算法 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,是广度优先算法的一种,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.其基本原理是:每次新扩展一个距离最短的点,更新与其相邻的点的距离.当所有边权都为正时,由于不会存在一个距离更短的没扩展过的点,所以这个点的距离永远不会再被改变,因而保证了算法的正确性.不过根据这个原理,用Dijkstra求最短路的图不能有负权边,因为扩展到负权边的时候会产生更短的距离,有可能就破

  • 详解Java中Dijkstra(迪杰斯特拉)算法的图解与实现

    目录 简介 工作过程 总体思路 实现 小根堆 Dijsktra 测试 简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等.注意该算法要求图中不存在负权边.对应问题:在无向图G=(V,E)中,假设每条边E(i)的长度W(i),求由顶点V0到各节点的最短路径. 工作过

随机推荐