python和opencv实现抠图
本文实例为大家分享了python实现抠图的具体代码,供大家参考,具体内容如下
其中使用了opencv中的grabcut方法
直接上代码
# encoding:utf-8 # 图像提取 # create by import numpy as np import cv2 from matplotlib import pyplot as plt img = cv2.imread('1.jpg') mask = np.zeros(img.shape[:2], np.uint8) bgdModel = np.zeros((1, 65), np.float64) fgdModel = np.zeros((1, 65), np.float64) rect = (20, 20, 413, 591) cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 10, cv2.GC_INIT_WITH_RECT) mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8') img = img * mask2[:, :, np.newaxis] img += 255 * (1 - cv2.cvtColor(mask2, cv2.COLOR_GRAY2BGR)) # plt.imshow(img) # plt.show() img = np.array(img) mean = np.mean(img) img = img - mean img = img * 0.9 + mean * 0.9 img /= 255 plt.imshow(img) plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
python实现人工智能Ai抠图功能
自己是个PS小白,没办法只能通过技术来证明自己. 话不多说,直接上代码 from removebg import RemoveBg import requests import os if __name__ == '__main__': path = '%s\picture'%os.getcwd() ispath = os.path.exists(path) if not ispath: os.mkdir(path) response = requests.post( 'https://api.
-
python实现抠图给证件照换背景源码
本文实例为大家分享了python实现抠图给证件照换背景的具体代码,供大家参考,具体内容如下 import cv2 import numpy as np import matplotlib.pyplot as plt #建立显示图片的函数 def show(image): plt.imshow(image) plt.axis('off') plt.show() #导入前景图 img=cv2.imread('font.jpg') #图片导入 img = cv2.cvtColor(img,cv2.CO
-
解读! Python在人工智能中的作用
人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具.一系列的进展在过去的几年中发生了:无事故驾驶超过300000英里并在三个州合法行驶迎来了自动驾驶的一个里程碑:IBM Waston击败了Jeopardy两届冠军;统计学习技术从对消费者兴趣到以万亿记的图像的复杂数据集进行模式识别. 这些发展必然提高了科学家和巨匠们对人工智能的兴趣,这也使得开发者们了解创建人工智能应用的真实本质.开发这些需要注意的第一件事是: 哪一种编程语言适合人工智能? 你所熟练掌握的每一种编程语言都可以是人工智能的
-
python、java等哪一门编程语言适合人工智能?
谷歌的AI击败了一位围棋大师,是一种衡量人工智能突然的快速发展的方式,也揭示了这些技术如何发展而来和将来可以如何发展. 人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具.一系列的进展在过去的几年中发生了:无事故驾驶超过300000英里并在三个州合法行驶迎来了自动驾驶的一个里程碑:IBM Waston击败了Jeopardy两届冠军;统计学习技术从对消费者兴趣到以万亿记的图像的复杂数据集进行模式识别.这些发展必然提高了科学家和巨匠们对人工智能的兴趣,这也使得开发者们了解创建人工智能应用的
-
Python+树莓派+YOLO打造一款人工智能照相机
不久之前,亚马逊刚刚推出了DeepLens.这是一款专门面向开发人员的全球首个支持深度学习的摄像机,它所使用的机器学习算法不仅可以检测物体活动和面部表情,而且还可以检测类似弹吉他等复杂的活动.虽然DeepLens还未正式上市,但智能摄像机的概念已经诞生了. 今天,我们将自己动手打造出一款基于深度学习的照相机,当小鸟出现在摄像头画面中时,它将能检测到小鸟并自动进行拍照.最终成品所拍摄的画面如下所示: 相机不傻,它可以很机智 我们不打算将一个深度学习模块整合到相机中,相反,我们准备将树莓派"挂钩&q
-
AI人工智能 Python实现人机对话
在人工智能进展的如火如荼的今天,我们如果不尝试去接触新鲜事物,马上就要被世界淘汰啦~ 本文拟使用Python开发语言实现类似于WIndows平台的"小娜",或者是IOS下的"Siri".最终达到人机对话的效果. [实现功能] 这篇文章将要介绍的主要内容如下: 1.搭建人工智能--人机对话服务端平台 2.实现调用服务端平台进行人机对话交互 [实现思路] AIML AIML由Richard Wallace发明.他设计了一个名为 A.L.I.C.E. (Artificia
-
python和opencv实现抠图
本文实例为大家分享了python实现抠图的具体代码,供大家参考,具体内容如下 其中使用了opencv中的grabcut方法 直接上代码 # encoding:utf-8 # 图像提取 # create by import numpy as np import cv2 from matplotlib import pyplot as plt img = cv2.imread('1.jpg') mask = np.zeros(img.shape[:2], np.uint8) bgdModel = n
-
Opencv实现抠图背景图替换功能
本文实例为大家分享了Opencv实现抠图替换背景图的具体代码,供大家参考,具体内容如下 下面简单图片演示一下: 提取mask: ===> 替换背景: + = python的opencv代码如下: # coding=utf-8 import cv2 import numpy as np img=cv2.imread('lp.jpg') img_back=cv2.imread('back.jpg') #日常缩放 rows,cols,channels = img_back.shape img_bac
-
在树莓派2或树莓派B+上安装Python和OpenCV的教程
我的Raspberry Pi 2昨天刚邮到,这家伙看上去很小巧可爱. 这小家伙有4核900MHZ的处理器,1G内存.要知道,Raspberry Pi 2 可比我中学电脑实验室里大多数电脑快多了. 话说,自从Raspberry Pi 2发布以来,我收到了很多请求,要求我能写一个在它上面安装OpenCV和Python的详细说明. 因此如果你想在Raspberry Pi启动运行OpenCV和Python,就往下面看! 在博文的剩余部分,我将提供在Raspberry Pi 2 和Raspberry Pi
-
python使用opencv读取图片的实例
安装好环境后,开始了第一个Hello word 例子,如何读取图片,保存图品 import cv2 import numpy as np import matplotlib.pyplot as plt #读取图片代码 img = cv2.imread('test.jpg',cv2.IMREAD_GRAYSCALE) #IMREAD_COLOR = 1 #IMREAD_UNCHANGED = -1 #展示图片 cv2.imshow('image',img) cv2.waitKey(0) cv2.d
-
利用Python和OpenCV库将URL转换为OpenCV格式的方法
今天的博客是直接来源于我自己的个人工具函数库. 过去几个月,有些PyImageSearch读者电邮问我:"如何获取URL指向的图片并将其转换成OpenCV格式(不用将其写入磁盘再读回)".这篇文章我将展示一下怎么实现这个功能. 额外的,我们也会看到如何利用scikit-image从URL下载一幅图像.当然前行之路也会有一个常见的错误,它可能让你跌个跟头. 继续往下阅读,学习如何利用利用Python和OpenCV将URL转换为图像 方法1:OpenCV.NumPy.urllib 第一个方
-
python通过opencv实现批量剪切图片
上一篇文章中,我们介绍了python实现图片处理和特征提取详解,这里我们再来看看Python通过OpenCV实现批量剪切图片,具体如下. 做图像处理需要大批量的修改图片尺寸来做训练样本,为此本程序借助opencv来实现大批量的剪切图片. import cv2 import os def cutimage(dir,suffix): for root,dirs,files in os.walk(dir): for file in files: filepath = os.path.join(root
-
Python通过OpenCV的findContours获取轮廓并切割实例
1 获取轮廓 OpenCV2获取轮廓主要是用cv2.findContours import numpy as np import cv2 im = cv2.imread('test.jpg') imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(imgray,127,255,0) image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_T
-
python使用opencv按一定间隔截取视频帧
关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph
-
Python实现OpenCV的安装与使用示例
本文实例讲述了Python实现OpenCV的安装与使用.分享给大家供大家参考,具体如下: 由于下一步要开始研究下深度学习,而深度学习领域很多的算法和应用都是用Python来实现的,把Python转成C++代码耗时太多,不如直接学习下Python直接医用Python的代码.搭建Python环境的过程是很耗时的,但是现在回头来看又觉得其实没有多少步骤,主要是在自己不明白的时候老是会出现各种各样奇奇怪怪的问题.现在只是对正确的步骤做个记录吧. 环境搭建: 1.Python的安装,没什么可说的,一直下一
-
使用Python的OpenCV模块识别滑动验证码的缺口(推荐)
最近终于找到一个好的方法,使用Python的OpenCV模块识别滑动验证码的缺口,可以将滑动验证码中的缺口识别出来了. 测试使用如下两张图片: target.jpg template.png 现在想要通过"template.png"在"target.jpg"中找到对应的缺口,代码实现如下: # encoding=utf8 import cv2 import numpy as np def show(name): cv2.imshow('Show', name) cv
随机推荐
- Smarty实现页面静态化(生成HTML)的方法
- Java异常处理实例教程
- Repeater中添加按钮实现点击按钮获取某一行数据的方法
- python 装饰器功能以及函数参数使用介绍
- Javascript String 字符串操作包
- Node.js中使用socket创建私聊和公聊聊天室
- 探讨如何配置SQL2008,让其允许C#远程外部连接的方法详解
- Windows或Linux系统中备份和恢复MongoDB数据的教程
- jQuery图片的展开和收缩实现代码
- 超赞的动手创建JavaScript框架的详细教程
- C++ 多重继承和虚拟继承对象模型、效率分析
- java计算两个时间相差天数的方法汇总
- C/C++中运算符的优先级、运算符的结合性详解
- 基于WebClient实现Http协议的Post与Get对网站进行模拟登陆和浏览实例
- javascript 学习笔记(onchange等)
- android短信监听工具(示例代码)
- 基于jQuery替换table中的内容并显示进度条的代码
- 533世纪家园为您提供50M免费空间
- Windows CMD命令大全(值得收藏)
- Virtualbox安装Lubuntu 18.04 64位的图文教程