基于ID3决策树算法的实现(Python版)

实例如下:

# -*- coding:utf-8 -*-

from numpy import *
import numpy as np
import pandas as pd
from math import log
import operator

#计算数据集的香农熵
def calcShannonEnt(dataSet):
  numEntries=len(dataSet)
  labelCounts={}
  #给所有可能分类创建字典
  for featVec in dataSet:
    currentLabel=featVec[-1]
    if currentLabel not in labelCounts.keys():
      labelCounts[currentLabel]=0
    labelCounts[currentLabel]+=1
  shannonEnt=0.0
  #以2为底数计算香农熵
  for key in labelCounts:
    prob = float(labelCounts[key])/numEntries
    shannonEnt-=prob*log(prob,2)
  return shannonEnt

#对离散变量划分数据集,取出该特征取值为value的所有样本
def splitDataSet(dataSet,axis,value):
  retDataSet=[]
  for featVec in dataSet:
    if featVec[axis]==value:
      reducedFeatVec=featVec[:axis]
      reducedFeatVec.extend(featVec[axis+1:])
      retDataSet.append(reducedFeatVec)
  return retDataSet

#对连续变量划分数据集,direction规定划分的方向,
#决定是划分出小于value的数据样本还是大于value的数据样本集
def splitContinuousDataSet(dataSet,axis,value,direction):
  retDataSet=[]
  for featVec in dataSet:
    if direction==0:
      if featVec[axis]>value:
        reducedFeatVec=featVec[:axis]
        reducedFeatVec.extend(featVec[axis+1:])
        retDataSet.append(reducedFeatVec)
    else:
      if featVec[axis]<=value:
        reducedFeatVec=featVec[:axis]
        reducedFeatVec.extend(featVec[axis+1:])
        retDataSet.append(reducedFeatVec)
  return retDataSet

#选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet,labels):
  numFeatures=len(dataSet[0])-1
  baseEntropy=calcShannonEnt(dataSet)
  bestInfoGain=0.0
  bestFeature=-1
  bestSplitDict={}
  for i in range(numFeatures):
    featList=[example[i] for example in dataSet]
    #对连续型特征进行处理
    if type(featList[0]).__name__=='float' or type(featList[0]).__name__=='int':
      #产生n-1个候选划分点
      sortfeatList=sorted(featList)
      splitList=[]
      for j in range(len(sortfeatList)-1):
        splitList.append((sortfeatList[j]+sortfeatList[j+1])/2.0)

      bestSplitEntropy=10000
      slen=len(splitList)
      #求用第j个候选划分点划分时,得到的信息熵,并记录最佳划分点
      for j in range(slen):
        value=splitList[j]
        newEntropy=0.0
        subDataSet0=splitContinuousDataSet(dataSet,i,value,0)
        subDataSet1=splitContinuousDataSet(dataSet,i,value,1)
        prob0=len(subDataSet0)/float(len(dataSet))
        newEntropy+=prob0*calcShannonEnt(subDataSet0)
        prob1=len(subDataSet1)/float(len(dataSet))
        newEntropy+=prob1*calcShannonEnt(subDataSet1)
        if newEntropy<bestSplitEntropy:
          bestSplitEntropy=newEntropy
          bestSplit=j
      #用字典记录当前特征的最佳划分点
      bestSplitDict[labels[i]]=splitList[bestSplit]
      infoGain=baseEntropy-bestSplitEntropy
    #对离散型特征进行处理
    else:
      uniqueVals=set(featList)
      newEntropy=0.0
      #计算该特征下每种划分的信息熵
      for value in uniqueVals:
        subDataSet=splitDataSet(dataSet,i,value)
        prob=len(subDataSet)/float(len(dataSet))
        newEntropy+=prob*calcShannonEnt(subDataSet)
      infoGain=baseEntropy-newEntropy
    if infoGain>bestInfoGain:
      bestInfoGain=infoGain
      bestFeature=i
  #若当前节点的最佳划分特征为连续特征,则将其以之前记录的划分点为界进行二值化处理
  #即是否小于等于bestSplitValue
  if type(dataSet[0][bestFeature]).__name__=='float' or type(dataSet[0][bestFeature]).__name__=='int':
    bestSplitValue=bestSplitDict[labels[bestFeature]]
    labels[bestFeature]=labels[bestFeature]+'<='+str(bestSplitValue)
    for i in range(shape(dataSet)[0]):
      if dataSet[i][bestFeature]<=bestSplitValue:
        dataSet[i][bestFeature]=1
      else:
        dataSet[i][bestFeature]=0
  return bestFeature

#特征若已经划分完,节点下的样本还没有统一取值,则需要进行投票
def majorityCnt(classList):
  classCount={}
  for vote in classList:
    if vote not in classCount.keys():
      classCount[vote]=0
    classCount[vote]+=1
  return max(classCount)

#主程序,递归产生决策树
def createTree(dataSet,labels,data_full,labels_full):
  classList=[example[-1] for example in dataSet]
  if classList.count(classList[0])==len(classList):
    return classList[0]
  if len(dataSet[0])==1:
    return majorityCnt(classList)
  bestFeat=chooseBestFeatureToSplit(dataSet,labels)
  bestFeatLabel=labels[bestFeat]
  myTree={bestFeatLabel:{}}
  featValues=[example[bestFeat] for example in dataSet]
  uniqueVals=set(featValues)
  if type(dataSet[0][bestFeat]).__name__=='str':
    currentlabel=labels_full.index(labels[bestFeat])
    featValuesFull=[example[currentlabel] for example in data_full]
    uniqueValsFull=set(featValuesFull)
  del(labels[bestFeat])
  #针对bestFeat的每个取值,划分出一个子树。
  for value in uniqueVals:
    subLabels=labels[:]
    if type(dataSet[0][bestFeat]).__name__=='str':
      uniqueValsFull.remove(value)
    myTree[bestFeatLabel][value]=createTree(splitDataSet\
     (dataSet,bestFeat,value),subLabels,data_full,labels_full)
  if type(dataSet[0][bestFeat]).__name__=='str':
    for value in uniqueValsFull:
      myTree[bestFeatLabel][value]=majorityCnt(classList)
  return myTree

import matplotlib.pyplot as plt
decisionNode=dict(boxstyle="sawtooth",fc="0.8")
leafNode=dict(boxstyle="round4",fc="0.8")
arrow_args=dict(arrowstyle="<-")

#计算树的叶子节点数量
def getNumLeafs(myTree):
  numLeafs=0
  firstSides = list(myTree.keys())
  firstStr=firstSides[0]
  secondDict=myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__=='dict':
      numLeafs+=getNumLeafs(secondDict[key])
    else: numLeafs+=1
  return numLeafs

#计算树的最大深度
def getTreeDepth(myTree):
  maxDepth=0
  firstSides = list(myTree.keys())
  firstStr=firstSides[0]
  secondDict=myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__=='dict':
      thisDepth=1+getTreeDepth(secondDict[key])
    else: thisDepth=1
    if thisDepth>maxDepth:
      maxDepth=thisDepth
  return maxDepth

#画节点
def plotNode(nodeTxt,centerPt,parentPt,nodeType):
  createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords='axes fraction',\
  xytext=centerPt,textcoords='axes fraction',va="center", ha="center",\
  bbox=nodeType,arrowprops=arrow_args)

#画箭头上的文字
def plotMidText(cntrPt,parentPt,txtString):
  lens=len(txtString)
  xMid=(parentPt[0]+cntrPt[0])/2.0-lens*0.002
  yMid=(parentPt[1]+cntrPt[1])/2.0
  createPlot.ax1.text(xMid,yMid,txtString)

def plotTree(myTree,parentPt,nodeTxt):
  numLeafs=getNumLeafs(myTree)
  depth=getTreeDepth(myTree)
  firstSides = list(myTree.keys())
  firstStr=firstSides[0]
  cntrPt=(plotTree.x0ff+(1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.y0ff)
  plotMidText(cntrPt,parentPt,nodeTxt)
  plotNode(firstStr,cntrPt,parentPt,decisionNode)
  secondDict=myTree[firstStr]
  plotTree.y0ff=plotTree.y0ff-1.0/plotTree.totalD
  for key in secondDict.keys():
    if type(secondDict[key]).__name__=='dict':
      plotTree(secondDict[key],cntrPt,str(key))
    else:
      plotTree.x0ff=plotTree.x0ff+1.0/plotTree.totalW
      plotNode(secondDict[key],(plotTree.x0ff,plotTree.y0ff),cntrPt,leafNode)
      plotMidText((plotTree.x0ff,plotTree.y0ff),cntrPt,str(key))
  plotTree.y0ff=plotTree.y0ff+1.0/plotTree.totalD

def createPlot(inTree):
  fig=plt.figure(1,facecolor='white')
  fig.clf()
  axprops=dict(xticks=[],yticks=[])
  createPlot.ax1=plt.subplot(111,frameon=False,**axprops)
  plotTree.totalW=float(getNumLeafs(inTree))
  plotTree.totalD=float(getTreeDepth(inTree))
  plotTree.x0ff=-0.5/plotTree.totalW
  plotTree.y0ff=1.0
  plotTree(inTree,(0.5,1.0),'')
  plt.show()

df=pd.read_csv('watermelon_4_3.csv')
data=df.values[:,1:].tolist()
data_full=data[:]
labels=df.columns.values[1:-1].tolist()
labels_full=labels[:]
myTree=createTree(data,labels,data_full,labels_full)
print(myTree)
createPlot(myTree)

最终结果如下:

{'texture': {'blur': 0, 'little_blur': {'touch': {'soft_stick': 1, 'hard_smooth': 0}}, 'distinct': {'density<=0.38149999999999995': {0: 1, 1: 0}}}}

得到的决策树如下:

参考资料:

《机器学习实战》

《机器学习》周志华著

以上这篇基于ID3决策树算法的实现(Python版)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 决策树的python实现方法

    本文实例讲述了决策树的python实现方法.分享给大家供大家参考.具体实现方法如下: 决策树算法优缺点: 优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关的特征数据 缺点:可能会产生过度匹配的问题 适用数据类型:数值型和标称型 算法思想: 1.决策树构造的整体思想: 决策树说白了就好像是if-else结构一样,它的结果就是你要生成这个一个可以从根开始不断判断选择到叶子节点的树,但是呢这里的if-else必然不会是让我们认为去设置的,我们要做的是提供一种方法,计算机可以根

  • 机器学习python实战之决策树

    决策树原理:从数据集中找出决定性的特征对数据集进行迭代划分,直到某个分支下的数据都属于同一类型,或者已经遍历了所有划分数据集的特征,停止决策树算法. 每次划分数据集的特征都有很多,那么我们怎么来选择到底根据哪一个特征划分数据集呢?这里我们需要引入信息增益和信息熵的概念. 一.信息增益 划分数据集的原则是:将无序的数据变的有序.在划分数据集之前之后信息发生的变化称为信息增益.知道如何计算信息增益,我们就可以计算根据每个特征划分数据集获得的信息增益,选择信息增益最高的特征就是最好的选择.首先我们先来

  • python实现决策树C4.5算法详解(在ID3基础上改进)

    一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作为树节点. 二.信息增益 以上公式是求信息增益率(ID3的知识点) 三.信息增益率 信息增益率是在求出信息增益值在除以. 例如下面公式为求属性为"outlook"的值: 四.C4.5的完整代码 from numpy import * from scipy import * from mat

  • 基于ID3决策树算法的实现(Python版)

    实例如下: # -*- coding:utf-8 -*- from numpy import * import numpy as np import pandas as pd from math import log import operator #计算数据集的香农熵 def calcShannonEnt(dataSet): numEntries=len(dataSet) labelCounts={} #给所有可能分类创建字典 for featVec in dataSet: currentLa

  • python 决策树算法的实现

    ''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ------------------------------ 运行结果:ID3(未剪枝) 正确率:85.9% 运行时长:356s ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = []; labelArr

  • Python机器学习算法之决策树算法的实现与优缺点

    1.算法概述 决策树算法是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法. 分类算法是利用训练样本集获得分类函数即分类模型(分类器),从而实现将数据集中的样本划分到各个类中.分类模型通过学习训练样本中属性集与类别之间的潜在关系,并以此为依据对新样本属于哪一类进行预测. 决策树算法是直观运用概率分析的一种图解法,是一种十分常用的分类方法,属于有监督学习. 决策树是一种树形结构,其中每个内部结点表示在一个属性上的测试,每个

  • 基于Python实现的ID3决策树功能示例

    本文实例讲述了基于Python实现的ID3决策树功能.分享给大家供大家参考,具体如下: ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事.ID3算法,即Iterative Dichotomiser 3,迭代二叉树3代,是Ross Quinlan发明的一种决策树算法,这个算法的基础就是上面提到的奥卡姆剃刀原理,越是小型的决策树越优于大的决策树,尽管如此,也不总是生成最小的树型结构,而是一个启发式算法. 如下示例是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想

  • python基于ID3思想的决策树

    这是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想的决策树,供大家参考,具体内容如下 # coding=utf-8 import operator from math import log import time def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no'], [0,0,'maybe']] labels = ['no surface

  • python 基于卡方值分箱算法的实现示例

    原理很简单,初始分20箱或更多,先确保每箱中都含有0,1标签,对不包含0,1标签的箱向前合并,计算各箱卡方值,对卡方值最小的箱向后合并,代码如下 import pandas as pd import numpy as np import scipy from scipy import stats def chi_bin(DF,var,target,binnum=5,maxcut=20): ''' DF:data var:variable target:target / label binnum:

  • 应用OpenCV和Python进行SIFT算法的实现详解

    应用OpenCV和Python进行SIFT算法的实现 如下图为进行测试的gakki101和gakki102,分别验证基于BFmatcher.FlannBasedMatcher等的SIFT算法,对比其优劣.为体现出匹配效果对于旋转特性的优势,将图gakki101做成具有旋转特性的效果. 基于BFmatcher的SIFT实现 BFmatcher(Brute-Force Matching)暴力匹配,应用BFMatcher.knnMatch( )函数来进行核心的匹配,knnMatch(k-nearest

  • 详解Python中4种超参自动优化算法的实现

    目录 一.网格搜索(Grid Search) 二.随机搜索(Randomized Search) 三.贝叶斯优化(Bayesian Optimization) 四.Hyperband 总结 大家好,要想模型效果好,每个算法工程师都应该了解的流行超参数调优技术. 今天我给大家总结超参自动优化方法:网格搜索.随机搜索.贝叶斯优化 和 Hyperband,并附有相关的样例代码供大家学习. 一.网格搜索(Grid Search) 网格搜索是暴力搜索,在给定超参搜索空间内,尝试所有超参组合,最后搜索出最优

  • python Canny边缘检测算法的实现

    图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波.我们知道微分运算是求信号的变化率,具有加强高频分量的作用.在空域运算中来说,对图像的锐化就是计算微分.对于数字图像的离散信号,微分运算就变成计算差分或梯度.图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子等等,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值,得到边缘图像. Canny边缘检测算子是一种多级检测算法.1986年由J

  • 详解Python查找算法的实现(线性、二分、分块、插值)

    目录 1. 线性查找 2. 二分查找 3. 插值查找 4. 分块查找 5. 总结 查找算法是用来检索序列数据(群体)中是否存在给定的数据(关键字),常用查找算法有: 线性查找:线性查找也称为顺序查找,用于在无序数列中查找. 二分查找:二分查找也称为折半查找,其算法用于有序数列. 插值查找:插值查找是对二分查找算法的改进. 分块查找:又称为索引顺序查找,它是线性查找的改进版本. 树表查找:树表查找又可分二叉查找树.平衡二叉树查找. 哈希查找:哈希查找可以直接通过关键字查找到所需要数据. 因树表查找

随机推荐