Python遍历numpy数组的实例

在用python进行图像处理时,有时需要遍历numpy数组,下面是遍历数组的方法:

[rows, cols] = num.shape
for i in range(rows - 1):
 for j in range(cols-1):
  print(num[j, i])

以上这篇Python遍历numpy数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python Numpy 数组的初始化和基本操作
  • python中numpy包使用教程之数组和相关操作详解
  • 浅谈numpy数组的几种排序方式
(0)

相关推荐

  • python中numpy包使用教程之数组和相关操作详解

    前言 大家应该都有所了解,下面就简单介绍下Numpy,NumPy(Numerical Python)是一个用于科学计算第三方的Python包. NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生.下面本文将详细介绍关于python中numpy包使用教程之数组和相关操作的相关内容,下面话不多说,来一起看看详细的介绍: 一.数组简介 Numpy中,最重要的数据结构是:多维数组类型(numpy.ndarray) ndarray由两部分组成

  • Python Numpy 数组的初始化和基本操作

    Python 是一种高级的,动态的,多泛型的编程语言.Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法. 一.基础: Numpy的主要数据类型是ndarray,即多维数组.它有以下几个属性: ndarray.ndim:数组的维数 ndarray.shape:数组每一维的大小 ndarray.size:数组中全部元素的数量 ndarray.dtype:数组中元素的类型(numpy.int32, numpy.int16, and num

  • 浅谈numpy数组的几种排序方式

    简单介绍 NumPy系统是Python的一种开源的数组计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)). 创建数组 创建1维数组: data = np.array([1,3,4,8]) 查看数组维度 data.shape 查看数组类型 data.dtype 通过索引获取或修改数组元素 data[1] 获取元素 data[1] = 'a' 修改元素 创建二维数组 data

  • Python遍历numpy数组的实例

    在用python进行图像处理时,有时需要遍历numpy数组,下面是遍历数组的方法: [rows, cols] = num.shape for i in range(rows - 1): for j in range(cols-1): print(num[j, i]) 以上这篇Python遍历numpy数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python Numpy 数组的初始化和基本操作 python中numpy包使用教程之

  • Python如何遍历numpy数组

    目录 Python遍历numpy数组 numpy中数组的遍历技巧分享 1. 内置for循环 2. flat迭代器 3. nditer迭代器 Python遍历numpy数组 下面是示例代码: import numpy as np num = np.zeros([2, 3]) [rows, cols] = num.shape print(rows, cols) for i in range(rows):     for j in range(cols):         print(num[i, j

  • 基于Python中numpy数组的合并实例讲解

    Python中numpy数组的合并有很多方法,如 - np.append() - np.concatenate() - np.stack() - np.hstack() - np.vstack() - np.dstack() 其中最泛用的是第一个和第二个.第一个可读性好,比较灵活,但是占内存大.第二个则没有内存占用大的问题. 方法一--append parameters introduction arr 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) values 用来合并到上述数组

  • Python替换NumPy数组中大于某个值的所有元素实例

    我有一个2D(二维) NumPy数组,并希望用255.0替换大于或等于阈值T的所有值.据我所知,最基础的方法是: shape = arr.shape result = np.zeros(shape) for x in range(0, shape[0]): for y in range(0, shape[1]): if arr[x, y] >= T: result[x, y] = 255 有更简洁和pythonic的方式来做到这一点吗? 有没有更快(可能不那么简洁和/或不那么pythonic)的

  • Python数据处理numpy.median的实例讲解

    numpy模块下的median作用为: 计算沿指定轴的中位数 返回数组元素的中位数 其函数接口为: median(a, axis=None, out=None, overwrite_input=False, keepdims=False) 其中各参数为: a:输入的数组: axis:计算哪个轴上的中位数,比如输入是二维数组,那么axis=0对应行,axis=1对应列: out:用于放置求取中位数后的数组. 它必须具有与预期输出相同的形状和缓冲区长度: overwrite_input:一个bool

  • python中numpy.empty()函数实例讲解

    在使用python编程的过程中,想要快速的创建ndarray数组,可以使用numpy.empty()函数.numpy.empty()函数所创建的数组内所有元素均为空,没有实际意义,所以它也是创建数组最快的方法.本文介绍python中numpy.empty()函数的使用方法. 1.numpy.empty()函数 这个函数可以创建一个没有任何具体值的ndarray数组,是创建数组最快的方法. 根据给定的维度和数值类型返回一个新的数组,其元素不进行初始化. 2.用法 import numpy as n

  • python 遍历字符串(含汉字)实例详解

    python 遍历字符串(含汉字)实例详解 s = "中国china" for j in s: print j 首先一个,你这个'a'是什么编码?可能不是你所想的gbk >>> a='中国' >>> a 这样试试看,如果出来是6个字(word),说明是utf-8,如果是4个字,说明gbk. 另外,不管是utf-8还是gbk,都不能这样遍历,因为这里它会一个字一个字拿出来.虚拟机把a当成一个长度为len(a)的字符串了. 接下来是遍历问题. Linux

  • Python遍历字典方式就实例详解

    这篇文章主要介绍了Python遍历字典方式就实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 " 记录遍历字典的几种方式" dict1={'name':'吴亦凡','age':'29','native':'广州','opus':'大碗宽面'} #遍历字典key值---方法1 for key in dict1: print(key) # 遍历字典key值---方法2 for key in dict1.keys(): print(k

  • python中numpy数组与list相互转换实例方法

    python的使用之所以方便,原因之一就是各种数据类型各样轻松的转换,例如numpy数组和list的相互转换,只需要函数方法的使用就可以处理.numpy数组使用numpy中的array()函数转换为list,list转使用tolist()方法转换为numpy数组,本文将向大家演示相互转换的过程. 1.numpy数组转list:使用numpy中的array()函数 np.array(a) array([ 3.234, 34. , 3.777, 6.33 ]) #转换后,可进行np.array的方法

  • Python中numpy数组的计算与转置详解

    目录 前言 1.numpy数组与数的运算 2.numpy相同尺寸的数组运算 3.numpy不同尺寸的数组计算 4.numpy数组的转置 总结: 前言 本文主要讲述numpy数组的计算与转置,讲相同尺寸数组的运算与不同尺寸数组的运算,同时介绍数组转置的三种方法. numpy数组的操作比较枯燥,但是都很实用,在很多机器学习.深度学习算法中都会使用到,对numpy数组的一些操作. 1.numpy数组与数的运算 主要包括数组与数的加减乘除运算,废话不多说,看代码: import numpy as np

随机推荐