取numpy数组的某几行某几列方法

这个操作在numpy数组上的操作感觉有点麻烦,但是也没办法。

例如

a = [[1,2,3],
[4,5,6],
[7,8,9]] 

取 a 的 2 3 行, 1 2 列

c=[1,2]
d =[0,1]

若写为

b = a[c,d]
output:
[4 8] 

取的是 第二行第一列 和第三行第二列的数据

这并不是我们想要的结果。

正确做法是:

b = a[c]先取想要的行数据
b = b[:,d]
print(b)
output:
[[4 5]
[7 8]] 

这才是我们想要的结果。必须要经过这两步才能完成。

以上这篇取numpy数组的某几行某几列方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python numpy 提取矩阵的某一行或某一列的实例
  • 浅谈numpy数组的几种排序方式
  • Python编程给numpy矩阵添加一列方法示例
(0)

相关推荐

  • 浅谈numpy数组的几种排序方式

    简单介绍 NumPy系统是Python的一种开源的数组计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)). 创建数组 创建1维数组: data = np.array([1,3,4,8]) 查看数组维度 data.shape 查看数组类型 data.dtype 通过索引获取或修改数组元素 data[1] 获取元素 data[1] = 'a' 修改元素 创建二维数组 data

  • Python编程给numpy矩阵添加一列方法示例

    首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]]) b = np.ones(3) c = np.array([[1,2,3,1],[4,5,6,1],[7,8,9,1]]) PRint(a) print(b) print(c) [[1 2 3] [4 5 6] [7 8 9]] [ 1. 1. 1.] [[1 2 3 1] [4

  • Python numpy 提取矩阵的某一行或某一列的实例

    如下所示: import numpy as np a=np.arange(9).reshape(3,3) a Out[31]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) 矩阵的某一行 a[1] Out[32]: array([3, 4, 5]) 矩阵的某一列 a[:,1] Out[33]: array([1, 4, 7]) b=np.eye(3,3) b Out[36]: array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0.,

  • 取numpy数组的某几行某几列方法

    这个操作在numpy数组上的操作感觉有点麻烦,但是也没办法. 例如 a = [[1,2,3], [4,5,6], [7,8,9]] 取 a 的 2 3 行, 1 2 列 c=[1,2] d =[0,1] 若写为 b = a[c,d] output: [4 8] 取的是 第二行第一列 和第三行第二列的数据 这并不是我们想要的结果. 正确做法是: b = a[c]先取想要的行数据 b = b[:,d] print(b) output: [[4 5] [7 8]] 这才是我们想要的结果.必须要经过这两

  • Python 取numpy数组的某几行某几列方法

    直接分析,如原矩阵如下(1): (1) 我们要截取的矩阵(取其一三行,和三四列数据构成矩阵)为如下(2): (2) 错误分析: 取 C 的1 3行,3 4 列,定义 Z = [0,2] #定义行数 d = [2,3] #定义列数 #代码 C_zd = C[z,d] 则结果为: 由结果分析取的是第一行第三列和第三行第四列的数据,并非我们想要的结果. 正确分析: C_A = c[[0,2]] #先取出想要的行数据 C_A = C_A[:,[2,3]] #再取出要求的列数据 print(C_A) #输

  • Python中对数组集进行按行打乱shuffle的方法

    如下所示: import numpy as np y1=np.random.randint(2,10,(5,3)) print ("排序列表:", y1) np.random.shuffle(y1) print ("随机排序列表:", y1) 以上这篇Python中对数组集进行按行打乱shuffle的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 讲解Python3中NumPy数组寻找特定元素下标的两种方法

    引子 Matlab中有一个函数叫做find,可以很方便地寻找数组内特定元素的下标,即:Find indices and values of nonzero elements. 这个函数非常有用.比如,我们想计算图1中点Q(x0, y0)抛物线的最短距离.一个可以实施的方法是:计算出抛物线上所有点到Q点的距离,找到最小值,用find函数找到最小值对应的下标,即M点横坐标和纵坐标对应的元素的下标,M点到Q点的距离就是最短距离. 首先给出Matlab使用find函数实现的代码: a = linspac

  • python中numpy数组与list相互转换实例方法

    python的使用之所以方便,原因之一就是各种数据类型各样轻松的转换,例如numpy数组和list的相互转换,只需要函数方法的使用就可以处理.numpy数组使用numpy中的array()函数转换为list,list转使用tolist()方法转换为numpy数组,本文将向大家演示相互转换的过程. 1.numpy数组转list:使用numpy中的array()函数 np.array(a) array([ 3.234, 34. , 3.777, 6.33 ]) #转换后,可进行np.array的方法

  • Python中numpy数组的计算与转置详解

    目录 前言 1.numpy数组与数的运算 2.numpy相同尺寸的数组运算 3.numpy不同尺寸的数组计算 4.numpy数组的转置 总结: 前言 本文主要讲述numpy数组的计算与转置,讲相同尺寸数组的运算与不同尺寸数组的运算,同时介绍数组转置的三种方法. numpy数组的操作比较枯燥,但是都很实用,在很多机器学习.深度学习算法中都会使用到,对numpy数组的一些操作. 1.numpy数组与数的运算 主要包括数组与数的加减乘除运算,废话不多说,看代码: import numpy as np

  • Python实现随机取一个矩阵数组的某几行

    废话不多说了,直接上代码吧! import numpy as np array = np.array([0, 0]) for i in range(10): array = np.vstack((array, [i+1, i+1])) print(array) # [[ 0 0] # [ 1 1] # [ 2 2] # [ 3 3] # [ 4 4] # [ 5 5] # [ 6 6] # [ 7 7] # [ 8 8] # [ 9 9] # [10 10]] rand_arr = np.ara

  • numpy.ndarray 交换多维数组(矩阵)的行/列方法

    如下所示: >> import numpy as np >> P = np.eye(3) >> P array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) 交换第 0 行和第 2 行: >> P[[0, 2], :] = P[[2, 0], :] # P[(0, 2), :] = P[(2, 0), :] >> P array([[ 0., 0., 1.], [ 0., 1., 0.], [ 1.

  • numpy.ndarray 实现对特定行或列取值

    如下所示: import numpy as np b = [[1,2,0], [4,5,0], [7,8,1], [4,0,1], [7,11,1] ] a=np.array([b]).reshape((5,3)) print(a) c=[1,3,4] # print(a[c]) d=np.nonzero(a[:, 2] == 0) print(d) print(a[d]) 以上这篇numpy.ndarray 实现对特定行或列取值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多

  • Numpy数组的组合与分割实现的方法

    目录 数组的组合 1.水平组合 2.垂直组合 3.行组合和列组合 4.深度组合 数组的分割 1.水平分割 1.1hsplit函数 1.2split函数 2.垂直分割 3.深度分割 在介绍数组的组合和分割前,我们需要先了解数组的维(ndim)和轴(axis)概念. 如果数组的元素是数组,即数组嵌套数组,我们就称其为多维数组.几层嵌套就称几维.比如形状为(a,b)的二维数组就可以看作两个一维数组,第一个一维数组包含a个一维数组,第二个一维数组包含b个数据. 每一个一维线性数组称为一个轴.二维数组的第

随机推荐