如何在python中实现随机选择

这篇文章主要介绍了如何在python中实现随机选择,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

想从一个序列中随机抽取若干元素,或者想生成几个随机数。

random 模块有大量的函数用来产生随机数和随机选择元素。比如,要想从一个序列中随机的抽取一个元素,可以使用random.choice() :

>>> import random
>>> values = [1, 2, 3, 4, 5, 6]
>>> random.choice(values)
2
>>> random.choice(values)
3
>>> random.choice(values)
1
>>>

为了提取出N 个不同元素的样本用来做进一步的操作,可以使用random.sample()

>>> random.sample(values, 2)
[6, 2]
>>> random.sample(values, 2)
[4, 3]
>>> random.sample(values, 3)
[4, 3, 1]

如果你仅仅只是想打乱序列中元素的顺序,可以使用random.shuffle() :

>>> random.shuffle(values)
>>> values
[2, 4, 6, 5, 3, 1]
>>> random.shuffle(values)
>>> values
[3, 5, 2, 1, 6, 4]
>>>

生成随机整数,请使用random.randint() :

>>> random.randint(0,10)
2
>>> random.randint(0,10)
5

为了生成0 到1 范围内均匀分布的浮点数,使用random.random() :

>>> random.random()
0.9406677561675867
>>> random.random()
0.133129581343897

如果要获取N 位随机位(二进制) 的整数,使用random.getrandbits() :

>>> random.getrandbits(200)
335837000776573622800628485064121869519521710558559406913275

了解上述介绍的功能,random 模块还包含基于均匀分布、高斯分布和其他分布的随机数生成函数。比如, random.uniform() 计算均匀分布随机数, random.gauss()计算正态分布随机数。对于其他的分布情况请参考在线文档。

在random 模块中的函数不应该用在和密码学相关的程序中。如果你确实需要类似的功能,可以使用ssl 模块中相应的函数。比如, ssl.RAND bytes() 可以用来生成一个安全的随机字节序列。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python生成随机红包的实例写法

    假设红包金额为money,数量是num,并且红包金额money>=num*0.01 原理如下,从1~money*100的数的集合中,随机抽取num-1个数,然后对这些数进行排序,在排序后的集合前后分别插入0和money*100,组成新的集合 用新的集合,(后一个数-前一个数)/100得到红包的大小 然后使用红包的时候,从num个红包集合中随机拿一个,既是随机红包了 def redbags(money, num=10): import random choice = random.sample(r

  • 详解用python生成随机数的几种方法

    今天学习了用python生成仿真数据的一些基本方法和技巧,写成博客和大家分享一下. 本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码. 1 从给定参数的正态分布中生成随机数 当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了.这里调用了Numpy模块中的random.normal函数

  • 详解Python利用random生成一个列表内的随机数

    首先,需要导入random模块: import random 随机取1-33之间的1个随机数,可能重复: random.choice(range(1,34)) print得到一系列随机数,执行一次得到一个随机数: print(random.choice(range(1,34))) 随机取1-33之间的6个随机数,可能重复: random.choices(range(1,34),k=6,weights=range(1,34)) 其权重值表示该数或该范围内的数输出概率大,输出结果为列表 随机取1-3

  • python设置随机种子实例讲解

    对于原生的random模块 import random random.seed(1) 如果不设置,则python根据系统时间自己定一个. 也可以自己根据时间定一个随机种子,如: import time import random seed = int(time.time()) random.seed(seed) 以上知识点和实例非常简单,大家可以测试下,感谢你的学习和对我们的支持.

  • python random从集合中随机选择元素的方法

    如下所示: list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] slice = random.sample(list, 5) #从list中随机获取5个元素,作为一个片断返回 print slice print list #原有序列并没有改变. print random.randint(12, 20) #生成的随机数n: 12 <= n <= 20 print random.randint(20, 20) #结果永远是20 #print random.randint(

  • Python使用random模块生成随机数操作实例详解

    本文实例讲述了Python使用random模块生成随机数操作.分享给大家供大家参考,具体如下: 今天在用Python编写一个小程序时,要用到随机数,于是就在网上查了一下关于Python生成各种随机数的方法,现将其总结如下: 此处,利用Python中的random模块生成随机数.因此首先必须导入该模块:import random 一. 随机产生一个元素 import random #生成一个0到1的随机浮点数: 0 <= n < 1.0 print(random.random()) >&g

  • Python实现随机选择元素功能

    如果要从序列中随机挑选元素,我们可以使用random模块的random.choice()方法: 如果想要取出N个元素,将选出的元素一处以做进一步的考察,可以使用random.sample()方法: 如果我们只是想要打乱序列的顺序(洗牌),可以使用random.shuffle(): 要产生随机数,可以使用random.randint()方法: 如果要产生0-1之间均匀分布的浮点数值,可以使用random.random()方法: 如果要得到N各随机比特位所表示的整数,可以使用random.getra

  • 如何在python中实现随机选择

    这篇文章主要介绍了如何在python中实现随机选择,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 想从一个序列中随机抽取若干元素,或者想生成几个随机数. random 模块有大量的函数用来产生随机数和随机选择元素.比如,要想从一个序列中随机的抽取一个元素,可以使用random.choice() : >>> import random >>> values = [1, 2, 3, 4, 5, 6] >>>

  • 如何在python中实现线性回归

    线性回归是基本的统计和机器学习技术之一.经济,计算机科学,社会科学等等学科中,无论是统计分析,或者是机器学习,还是科学计算,都有很大的机会需要用到线性模型.建议先学习它,然后再尝试更复杂的方法. 本文主要介绍如何逐步在Python中实现线性回归.而至于线性回归的数学推导.线性回归具体怎样工作,参数选择如何改进回归模型将在以后说明. 回归 回归分析是统计和机器学习中最重要的领域之一.有许多可用的回归方法.线性回归就是其中之一.而线性回归可能是最重要且使用最广泛的回归技术之一.这是最简单的回归方法之

  • 浅析Python中的随机采样和概率分布

    目录 1. random.choice 2. random.choices(有放回) 3. numpy.sample(无放回) 4.rng.choices 和 rng.sample 5. numpy.random.choices 参考文献  Python(包括其包Numpy)中包含了了许多概率算法,包括基础的随机采样以及许多经典的概率分布生成.我们这个系列介绍几个在机器学习中常用的概率函数.先来看最基础的功能--随机采样. 1. random.choice 如果我们只需要从序列里采一个样本(所有

  • 详解Python中生成随机数据的示例详解

    目录 随机性有多随机 加密安全性 PRNG random 模块 数组 numpy.random 相关数据的生成 random模块与NumPy对照表 CSPRNG 尽可能随机 os.urandom() secrets 最佳保存方式 UUID 工程随机性的比较 在日常工作编程中存在着各种随机事件,同样在编程中生成随机数字的时候也是一样,随机有多随机呢?在涉及信息安全的情况下,它是最重要的问题之一.每当在 Python 中生成随机数据.字符串或数字时,最好至少大致了解这些数据是如何生成的. 用于在 P

  • 如何在Python中引用其他模块

    目录 一.前言 二.导入和使用标准模块 三.第三方模块的下载与安装 一.前言 在Python中,除了可以自定义模块外,还可以引用其他模块,主要包括使用标准库和第三方模块.下面分别进行介绍. 二.导入和使用标准模块   在Python中,自带了很多实用的模块,称为标准模块(也可以称为标准库),对于标准模块,我们可以直接使用import语句导入到Python文件中使用.例如,导入标准模块random(用于生成随机数),可以使用下面代码: import random # 导入标准模块random 说明

  • 如何在python中写hive脚本

    这篇文章主要介绍了如何在python中写hive脚本,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.直接执行.sql脚本 import numpy as np import pandas as pd import lightgbm as lgb from pandas import DataFrame from sklearn.model_selection import train_test_split from io import St

  • 如何在python中判断变量的类型

    python的数据类型有:数字(int).浮点(float).字符串(str),列表(list).元组(tuple).字典(dict).集合(set) 一般通过以下方法进行判断: 1.isinstance(参数1,参数2) 描述:该函数用来判断一个变量(参数1)是否是已知的变量类型(参数2) 类似于type() 参数1:变量 参数2:可以是直接或间接类名.基本类型或者由它们组成的元组. 返回值: 如果对象的类型与参数二的类型(classinfo)相同则返回 True,否则返回 False 例子:

  • python 中关于pycharm选择运行环境的问题

    一直用pycharm写代码 一直用anaconda管理python环境 但是今天我居然发现我不会更改pycharm当前的运行环境到我新建的anaconda environment中! 配置: 系统: win10: GPU:NVIDIA GeForce GTX 1050 Ti 管理平台:anaconda3 IDE:Pycharm 问题 我的anaconda里面有三个环境,第一个是自定义环境,python3.6的,里面的库最多:第二个是我用于学习深度学习的,python3.5,主要是目前cuda在w

  • 如何在Python中创建二叉树

    前言 本文的内容是数据结构中二叉树部分最基础的,之所以写一下主要是为了方便刷题的时候,能够在自己电脑上很快的使用这种小的demo进行复杂的练习. 二叉树节点定义 二叉树的节点定义如下: class TreeNode():#二叉树节点 def __init__(self,val,lchild=None,rchild=None): self.val=val #二叉树的节点值 self.lchild=lchild #左孩子 self.rchild=rchild #右孩子 递归构建二叉树 本文使用的前序

  • 分析如何在Python中解析和修改XML

    目录 一.什么是XML? 二.Python XML解析模块 2.1.xml.etree.ElementTree模块 2.2.xml.dom.minidom模块 一.什么是XML? XML代表可扩展标记语言.它在外观上类似于HTML,但XML用于数据表示,而HTML用于定义正在使用的数据.XML专门设计用于在客户端和服务器之间来回发送和接收数据.看看下面的例子: 例子: <? xml version ="1.0" encoding ="UTF-8" ?>

随机推荐